

2013

Pracoviště:

Regionální inovační centrum elektrotechniky, Fakulta elektrotechnická

Výzkumná zpráva č.: 22190–055–2013

Vektorové řízení asynchronního motoru s měničem 4L-FLC

Druh úkolu:	Výzkumný
Řešitelé:	Ing. Petr Kamenický, Ing. Dušan Janík, Ing. To- máš Košan
Vedoucí úkolu:	Doc. Ing. Zdeněk Peroutka, Ph.D.
Počet stran:	16
Datum:	listopad 2013
Revize:	1

Tato výzkumná zpráva vznikla s podporou projektů CZ.1.05/2.1.00/03.0094 a TA01010863

Anotace

Tato výzkumná zpráva se zabývá vektorovým řízením asynchronního motoru pomocí čtyřúrovňového měniče s plovoucími kondenzátory (4L-FLC). Ve zprávě je stručně popsán algoritmus použitého vektorového řízení asynchronního motoru a jsou ukázány výsledky simulačních experimentů.

Abstract

This research report is concerned with vector control of induction machine with 4L-FLC converter. In this report algorithm of the used vector control of induction machine is described and results of simulation experiments are shown.

Seznam symbolů a zkratek

lpha,eta	stojící souřadný systém
d,q	rotující souřadný systém
Ψ	magnetický tok [Wb]
α	poloha požadovaného vektoru napětí v rotujícím souřadném systému
eta	poloha požadovaného vektoru napětí ve stojícím souřadném systému
ϑ_r	natočení rotujícího souřadného systému vůči stojícímu souřadnému systému
ω	úhlová rychlost $[m rad\cdot s^{-1}]$
f	frekvence [Hz]
p_p	počet pólových dvojic [-]
n	mechanické otáčky motoru $[\min^{-1}]$
0	omezovač
R	odpor [Ω], regulátor
l, i	proud [A]
L	indukčnost [H]
Т	perioda [s]
U, u	napětí [V]
4L-FLC	čtyřúrovňový měnič s plovoucími kondenzátory
PWM	pulzně šířková modulace
ASM	asynchronní motor

Indexy

lpha,eta	stojící souřadný systém
d,q	rotující souřadný systém
a, b, c	označení fází
S	veličina statoru
r	veličina rotoru
W	požadovaná velikost veličiny
Ν	jmenovitá hodnota
u	veličina spjatá s napětím
m	hloubka modulace
max	maximální hodnota

Obsah

1 l	Ívod	5
2 F	Popis použitého vektorového řízení	5
3 F	Parametry ASM a regulace použité v simulacích	6
4 \	Výsledky simulací \ldots \ldots \ldots \ldots \ldots	8
5 Z	Závěr	13
Lite	eratura	14

1 Úvod

Tato výzkumná zpráva se zabývá simulačním ověřením funkčnosti pohonu asynchronního motoru napájeného čtyřúrovňovým napěťovým střídačem 4L-FLC. Pro řízení asynchronního motoru je použito vektorové řízení orientované na rotorový magnetický tok motoru. Ve zprávě je simulačně ověřena funkčnost PWM modulátoru měniče 4L-FLC a je ověřeno balancování napětí na plovoucích kondenzátorech měniče v průběhu přechodových dějů na pohonu.

V prováděných simulacích byly využity parametry asynchronního motoru o výkonu 11 kW se štítkovými hodnotami uvedenými v tabulce 1.

$\neq 0,$ ω_m Voltage Isaw calculation Ucr Usdw Usw *co PWM U_{sqv} $u_{s\beta}$ α *sin arctg Ť θ i_{sa}, i_{sb} Matematicky model $sgn(\omega_{...})$ ASN ASM $= 2\pi f_m$ $\omega_{\rm m}$

2 Popis použitého vektorového řízení

Obr. 1: Regulační schéma pohonu s asynchronním motorem

Pro regulaci pohonu bylo využito vektorové řízení popsané ve zprávě [1], jehož schéma je na obrázku 1. Jedná se o vektorové řízení v rotujícím souřadném systému (d,q), který je svázaný s vektorem rotorového magnetického toku.

Vektorové řízení má dva vstupy. Těmi jsou požadovaná mechanická rychlost ω_{mw} a požadovaná velikost vektoru rotorového magnetického toku Ψ_{rw} . Ty jsou kontrolovány pomocí regulátorů R_{ω} a R_{Ψ} .

Výstupem regulátoru rychlosti (R_{ω}) je požadovaná momentotvorná složka vektoru statorového proudu I_{sqw} . Ta je omezovačem O_{ω} omezena podle vztahu $I_{sqw1} \leq \sqrt{I_{smax}^2 - I_{sdw}^2}$ tak, aby nebyl překročen maximální proud motoru I_{smax} . Požadovaný proud I_{sqw1} může být ještě ovlivněn

zásahem regulátoru napětí na kondenzátoru střídače R_{Uc} . Pokud toto napětí klesne pod zvolenou minimální úroveň, regulátor R_{Uc} nastaví takovou velikost momentotvorné složky proudu, která zajistí, že pohon přejde do generátorického režimu, ve kterém je napětí na kondenzátoru udržováno využitím mechanické energie pohonu.

Výstupem regulátoru magnetického toku (R_{Ψ}) je horní limit omezovače požadované tokotvorné složky vektoru statorového proudu I_{sdw} .

Momentotvorná a tokotvorná složka proudu jsou kontrolovány pomocí regulátorů $\rm R_{Iq}$ a $\rm R_{Id}$, jejichž výstupem jsou složky požadovaného vektoru napětí v příslušných osách d,q.

Ty jsou přičteny ke složkám vektoru požadovaného statorového napětí vycházejícím z bloku "Voltage calculation" (výpočet napětí), který vychází z napěťových rovnic statoru v ustáleném stavu, a který tyto složky vypočítává na základě požadované momentotvorné I_{sqw} a tokotvorné I_{sdw} složky statorového proudu. Blok výpočet napětí tak ulehčuje práci regulátorům R_{Iq} a R_{Id} .

Výstupem PI regulátoru hloubky modulace R_{Urm} je požadovaná tokotvorná složka vektoru statorového proudu I_{sdw} . Pokud je požadovaná hloubka modulace (U_{rmf}) větší než maximální dovolená (U_{rm}_{max}) , je regulátorem snižována hodnota požadované tokotvorné složky proudu tak, aby požadovaná hloubka modulace nebyla větší než U_{rm}_{max} . Tím je realizováno odbuzování motoru.

Zpětnovazební signály pro regulátory R_{Ψ} , R_{Iq} a R_{Id} jsou získávány z proudového matematického modelu motoru v rotujícím souřadném systému (d,q), který vypočítává i úhel ϑ_r , což je úhel natočení rotujícího systému (d,q) vůči stojícímu systému (α, β).

3 Parametry ASM a regulace použité v simulacích

Jmenovité nepětí na stejnosměrné straně měniče bylo v simulacích 700 V a použitá kapacita meziobvodu měniče byla uvažována 2,2 mF.

Jmenovitý výkon	$P_{\rm N} = 11\rm kW$
Jmenovité otáčky	$n_N = 1460 min^{-1}$
Počet pólpárů	$p_p = 2$
Jmenovitá statorová frekvence	$f_{\rm sN}=50{\rm Hz}$
Účiník	$\cos \varphi = 0.84$
Jmenovitý efektivní proud motoru	$I_{\rm sNef} = 12,4{\rm A}$
Odpor statorového vinutí	$R_{\rm s}=1,\!15\Omega$
Odpor rotorového vinutí	$R_r = 1,456334\Omega$
Hlavní indukčnost	$L_{\rm h} = 0,\!219073{\rm H}$
Rozptylová indukčnost statoru	$L_{\rm ss} = 0{,}008921{\rm H}$
Rozptylová indukčnost rotoru	$L_{\rm rs} = 0{,}011297{\rm H}$

Tabulka 1: Parametry asynchronního motoru

Tabulka 2: Parametry vektorového řízení ASM

Perioda spínání PWM	$\mathrm{T_{pwm}}=1/800\mathrm{s}$
Perioda vzorkování regulace	$\mathrm{T_{vr}}=125$ e-6 s
Perioda regulačního zásahu regulátorů	$\mathrm{T}_\mathrm{update}=625$ e-6 s
Proporcionální zesílení PI regulátorů $\rm R_{Id}, R_{Iq}$	$\mathrm{K_{RI}}=10,0$
Časová konstanta PI regulátorů $\mathrm{R}_{\mathrm{Id}},\mathrm{R}_{\mathrm{Iq}}$	$\mathrm{T_{RI}}=0.05\mathrm{s}$
Proporcionální zesílení PI regulátoru $\mathrm{R}_{\mathrm{Urm}}$	$K_{RUrm} = 60.0$
Časová konstanta PI regulátoru $\mathrm{R}_{\mathrm{Urm}}$	$\mathrm{T}_{\mathrm{RUrm}}=0,05\mathrm{s}$
Proporcionální zesílení PI regulátoru ${ m R}_\omega$	$K_{R\omega} = 1.5$
Časová konstanta PI regulátoru R_ω	$\mathrm{T_{R\omega}=0.5s}$
Proporcionální zesílení PI regulátoru ${ m R}_{\Psi}$	$\mathrm{K}_{\mathrm{R}\Psi}=$ 180,0
Časová konstanta PI regulátoru R_{Ψ}	$\mathrm{T}_{\mathrm{R}\Psi}=0.5\mathrm{s}$
Proporcionální zesílení PI regulátoru R_{Uc}	$K_{RUc} = 0.5$
Časová konstanta PI regulátoru R_{Uc}	$\mathrm{T}_{\mathrm{RUc}}=$ 0,01 s
Omezovač O $_{\omega}$	$O_{\omega min} = -2 \cdot I_{smax}, \ O_{\omega max} = 2 \cdot I_{smax}$
Omezovač O2	$O_{2min} = -I_{smax}, \ O_{2max} = I_{sdw}$
Omezovač O3	$O_{3min} = -1500V,O_{3max} = 1500V$
Omezovač O4	$O_{4min} = 0 A, O_{4max} = I_{smax}$
Omezovač O5	$O_{5min} = 0 \text{ A}, O_{5max} = 2 \cdot $

4 Výsledky simulací

Obrázek 2 ukazuje nabuzení motoru na jmenovitý magnetický tok. V průběhu nabuzení dochází ke změně napětí v meziobvodu. Řídicí algoritmus vektorového řízení i algoritmus balancování napětí na plovoucích kondenzátorech jsou si schopny s touto změnou bez problémů poradit. Obrázek ukazuje tokotvornou složku statorového proudu motoru I_{sd} , napětí na kondenzátorech měniče a fázové napětí střídače.

Obr. 2: Start pohonu - nabuzení

Obrázek 3 ukazuje rozběh pohonu na polovinu jmenovitých mechanických otáček a následnou reverzaci. Obrázek ukazuje tokotvornou a momentotvornou složku statorového proudu motoru I_{sd} a I_{sq} , napětí na kondenzátorech měniče a požadovanou a skutečnou mechanickou frekvenci motoru v Hz.

Obr. 3: Reverzace pohonu

Obrázek 4 ukazuje přechod pohonu z motorického do generátorického režimu. Obrázek ukazuje tokotvornou a momentotvornou složku statorového proudu motoru I_{sd} a I_{sq} a napětí na kondenzátorech měniče.

Obrázek 5 ukazuje přechod pohonu z generátorického do motorického režimu. Obrázek ukazuje tokotvornou a momentotvornou složku statorového proudu motoru I_{sd} a I_{sq} a napětí na kondenzátorech měniče.

Obrázek 6 ukazuje průběhy fázového napětí střídače a proudu zátěže příslušné fáze v motorickém režimu. Pro větší názornost je na obrázku vykreslen dvacetinásobek hodnoty proudu.

Obrázek 7 ukazuje průběhy fázového napětí střídače a proudu zátěže příslušné fáze v generátorickém režimu. Pro větší názornost je na obrázku vykreslen dvacetinásobek hodnoty proudu.

Obr. 4: Přechod pohonu z motorického do generátorického režimu

Obr. 5: Přechod pohonu z generátorického do motorického režimu

Obr. 6: Fázové napětí střídače a proud zátěže příslušné fáze v motorickém režimu

Obr. 7: Fázové napětí střídače a proud zátěže příslušné fáze v generátorickém režimu

Obrázek 8 ukazuje odezvu pohonu na výpadek napájení meziobvodu. V čase 0,2 s dojde k přerušení napájení meziobvodu. Pohon od toho okamžiku čerpá energii z kondenzátoru ve stejnosměrném meziobvodu a tím dochází k jeho vybíjení. To se děje až do času 0,45 s, kdy napětí meziobvodu dosáhne minimální nastavené hodnoty a v tu chvíli zareaguje regulátor napětí v meziobvodu měniče. Z obrázku je zřejmé, že je pohon úspěšně převeden do generátorického režimu. Napětí v meziobvodu je udržováno na hodnotě 600 V a motor je zvolna bržděn.

Obr. 8: Reakce pohonu na výpadek napájení meziobvodu

5 Závěr

Účelem výzkumné zprávy bylo simulačně ověřit funkčnost vektorového řízení asynchronního motoru v součinosti s čtyřúrovňovým měničem 4L-FLC. Výsledky simulací ukázaly, že pohon s tímto měničem je plně funkční a že algoritmus balancování napětí na plovoucích kondenzátorech je schopen se vypořádat i s rychlými změnami napětí v meziobvodu měniče. Na tuto zprávu navazuje výzkumná zpráva [2], která obsahuje výsledky experimentálního ověření pohonu na laboratorním prototypu.

Literatura

- Z. Peroutka and K. Zeman, "Trolejbus SOR optimální algoritmy řízení a regulace hlavního trakčního pohonu," Západočeská univerzita v Plzni, Plzeň, Tech. Rep. 22160–2–09, leden 2009.
- [2] T. Košan, D. Uzel, V. Blahník, and P. Kamenický, "Pohon s asynchronním motorem: Experimentální studie se čtyřúrovňovými měniči," Západočeská univerzita v Plzni, Plzeň, Tech. Rep. 22190–037–2013, listopad 2013.

Seznam obrázků

1	Regulační schéma pohonu s asynchronním motorem	5
2	Start pohonu - nabuzení	8
3	Reverzace pohonu	9
4	Přechod pohonu z motorického do generátorického režimu	10
5	Přechod pohonu z generátorického do motorického režimu	10
6	Fázové napětí střídače a proud zátěže příslušné fáze v motorickém režimu	11
7	Fázové napětí střídače a proud zátěže příslušné fáze v generátorickém režimu	11
8	Reakce pohonu na výpadek napájení meziobvodu	12

Seznam tabulek

1	Parametry asynchronního motoru	7
2	Parametry vektorového řízení ASM	7

Historie revizí

Rev.	Kapitola	Popis změny	Datum, Jméno/Odd.
1	všechny	Publikování dokumentu	22. 11. 2013, PK / RICE