

David Uzel – Zdeněk Peroutka

Pohon se synchronním motorem s vnitřními permanentními magnety: Kalman filtr ve fázových souřadnicích – plný model – experimentální ověření

Technická zpráva

Pracovní balíček:

11 – Elektrické části pohonu

Rok řešení:

2015

2015

Pracoviště:Regionální inovační centrum elektrotechnikyVýzkumná zpráva č.:22190-028-2015

Pohon se synchronním motorem s vnitřními permanentními magnety: Kalman filtr ve fázových souřadnicích – plný model – experimentální ověření

Druh úkolu:	Vědecko-výzkumný
Řešitelé:	Ing. D. Uzel, Ph.D., prof. Ing. Z. Peroutka, Ph.D.
Vedoucí úkolu:	prof. Ing. Z. Peroutka, Ph.D.
Počet stran:	19
Datum vydání:	prosinec 2015
Revize:	1

Tato práce vznikla s podporou projektů ED2.1.00/03.0094, CKDV TE01020038 a SGS-2015-038

Anotace

Tato výzkumná zpráva uvádí bezsenzorový estimační algoritmus Kalmanova filtru ve fázových souřadnicích. Pro daný pohon je provedeno experimentální ověření na vyvinutém laboratorním pracovišti se synchronním motorem s vnitřními permanentními magnety o výkonu 4kW.

Obsah

1 ÚVOD	6
2 TEORETICKÉ ÚVAHY	6
2.1 Kalman filtr – stavové proudy	6
2.2 Kalman filtr – stavové magnetické toky	8
3 EXPERIMENTÁLNÍ OVĚŘENÍ	12
4 ZÁVĚR	16
PŘÍLOHA 1	17
Parametry motoru	17

Použité symboly a zkratky

α, β	Stojící souřadný systém.
a, b, c	Fázové souřadnice
arctg	Funkce arkustangens
d, q	Rotující souřadný systém svázaný s polohou rotoru (motor) nebo vektoru
	napětí zdroje (usměrňovač)
Ψ	Magnetický tok [Wb]
9	Poloha osy d ve stojícím souřadném systému (α , β) [°]
3	Poloha požadovaného vektoru napětí ve stojícím souřadném systému ($lpha,eta$)
	[°]
بخ	Šum veličiny
Δ	Rozdíl dvou hodnot, změna veličiny
J	Moment setrvačnosti [kgm ²]
f	Frekvence [Hz]
l, i	Elektrický proud [A]
L, I	Indukčnost [H]
ω	Úhlová frekvence [rad.s ⁻¹]
R	Elektrický odpor [Ω], regulátor
t	Čas [s]
А	Amplituda střídavé veličiny
U, u	Elektrické napětí [V]
IPMSM	Synchronní motor s vnitřními perm. magnety
PWM	Pulsně šířková modulace
DP	Dolnopropustný filtr
d	Dílek, derivace

	-
dt	Časová derivace

Indexy

α, β	Stojící souřadný systém
d, q	Rotující souřadný systém svázaný s polohou rotoru
S	Veličina statoru, veličina odpovídající funkci sinus
σ	Rozptyl
h	Hlavní
r	Veličina rotoru, referenční hodnota
w	Požadovaná hodnota veličiny
1	Elektrický proud
е	Estimovaná veličina
i	Indukovaná veličina
с	Veličina kondenzátoru ve stejnosměrném meziobvodu
m	Maximální, mechanická hodnota

1 Úvod

V předkládané zprávě je uveden experimentální rozbor bezsenzorové metody na principu Kalmanova filtru pro vyhodnocení polohy rotoru synchronního motoru s vnitřními permanentními magnety s harmonickými v magnetickém toku. Zpráva poukazuje na principiální vlastnosti.

2 Teoretické úvahy

Z důvodu reálné konstrukce motory s vnitřními permanentními magnety obsahují harmonické v magnetickém toku stroje. Z hlediska měření parametrů a nesymetrií může být výhodnější použít model v a, b, c souřadnicích.

Základní matematický model je dán:

$$u_{sa} = R_s i_{sa} + L_{sa} di_{sa} / dt + u_{ia}$$
(2.1)

$$u_{sb} = R_s i_{sb} + L_{sb} di_{sb} / dt + u_{ib}$$
(2.2)

$$u_{sc} = R_s i_{sc} + L_{sc} di_{sc} / dt + u_{ic}$$
(2.3)

$$u_i = \omega_r \psi_i \tag{2.4}$$

$$J\frac{d\omega_m}{dt} = M - M_z \tag{2.5}$$

$$M = \psi_{ia}i_{sa} + \psi_{ib}i_{sb} + \psi_{ic}i_{sc}$$
(2.6)

2.1 Kalman filtr – stavové proudy

Z důvodu využití daných rovnic, byl použit Kalmanův filtr postavený na uvedeném mat. modelu:

sloupcový vektor stavu

$$\boldsymbol{x}_{t} = \begin{bmatrix} \boldsymbol{i}_{sa}; & \boldsymbol{i}_{sb}; & \boldsymbol{i}_{sc}; & \boldsymbol{\omega}_{m}; & \boldsymbol{\vartheta} \end{bmatrix}$$
(2.7)

sloupcový vektor měření

$$\mathbf{v}_t = \begin{bmatrix} \mathbf{i}_{sa}; & \mathbf{i}_{sb}; & \mathbf{i}_{sc} \end{bmatrix}.$$
(2.8)

Diskretizovaná forma stavových rovnic pomocí Eulerovy metody prvního řádu s krokem diskretizace Δt je dána:

Rev.1 Prosinec 2015

$$\begin{split} \mathbf{i}_{sa_{t+1}} &= \mathbf{i}_{sa_{t}} + \left[\frac{\mathbf{u}_{sa}}{\mathbf{L}_{sa}} - \frac{\mathbf{R}_{s} \mathbf{i}_{sa_{t}}}{\mathbf{L}_{sa}} - \frac{\omega_{m} \mathbf{p}_{p} \psi_{ia}}{\mathbf{L}_{sa}} \right] \Delta t + \boldsymbol{\xi}_{i_{sa_{t}}} \\ \mathbf{i}_{sb_{t+1}} &= \mathbf{i}_{sb_{t}} + \left[\frac{\mathbf{u}_{sb}}{\mathbf{L}_{sb}} - \frac{\mathbf{R}_{s} \mathbf{i}_{sb_{t}}}{\mathbf{L}_{sb}} - \frac{\omega_{m} \mathbf{p}_{p} \psi_{ib}}{\mathbf{L}_{sb}} \right] \Delta t + \boldsymbol{\xi}_{i_{sb_{t}}} \\ \mathbf{i}_{sc_{t+1}} &= \mathbf{i}_{sc_{t}} + \left[\frac{\mathbf{u}_{sc}}{\mathbf{L}_{sc}} - \frac{\mathbf{R}_{s} \mathbf{i}_{sc_{t}}}{\mathbf{L}_{sc}} - \frac{\omega_{m} \mathbf{p}_{p} \psi_{ic}}{\mathbf{L}_{sc}} \right] \Delta t + \boldsymbol{\xi}_{i_{sc_{t}}} \\ \boldsymbol{\omega}_{m_{t+1}} &= \boldsymbol{\omega}_{m_{t}} + \boldsymbol{\xi}_{\boldsymbol{\omega}_{m_{t}}} \\ \boldsymbol{\theta}_{t+1} &= \boldsymbol{\theta}_{t} + \boldsymbol{\omega}_{m_{t}} \mathbf{p}_{p} \Delta t + \boldsymbol{\xi}_{\boldsymbol{\theta}_{t}} \end{split}$$

$$(2.9)$$

Daný model tedy přepokládá nulovou změnu rychlosti v rámci periody vzorkování.

Vlastní filtr pak využívá následujících výpočtů:

$$P_{t}^{-} = AP_{t-1}^{+}A^{T} + Q_{t}$$

$$K_{t} = P_{t}^{-}C_{t}(C_{t}P_{t}^{-}C_{t}^{T} + R)^{-1}$$

$$P_{t}^{-} = (I - K_{t}C_{t})P_{t}^{-}$$

$$\hat{x}_{t} = A\hat{x}_{t-1} + Bu_{t-1} + K_{t}(y_{t} - \hat{y}_{t-1})$$
(2.10)

, kde

$$A = \begin{bmatrix} 1 - \frac{R_{s}\Delta t}{L_{sa}} & 0 & 0 & \frac{-p_{p}\psi_{ia}\Delta t}{L_{sa}} & 0 \\ 0 & 1 - \frac{R_{s}\Delta t}{L_{sb}} & 0 & \frac{-p_{p}\psi_{ib}\Delta t}{L_{sb}} & 0 \\ 0 & 0 & 1 - \frac{R_{s}\Delta t}{L_{sb}} & \frac{-p_{p}\psi_{ic}\Delta t}{L_{sb}} & 0 \\ \frac{\psi_{ia}\Delta t}{J} & \frac{\psi_{ib}\Delta t}{J} & \frac{\psi_{ic}\Delta t}{J} & 1 & 0 \\ 0 & 0 & 0 & p_{p}\Delta t & 1 \end{bmatrix}$$
(2.11)

B =	$\begin{bmatrix} \Delta t \\ L_{sa} \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	0 $\frac{\Delta t}{L_{sb}}$ 0 0 0 0	0 $\frac{\Delta t}{L_{sc}}$ 0 0	$\begin{bmatrix} 0 \\ 0 \\ -\frac{\Delta t}{J} \\ 0 \end{bmatrix}$					(2.12)
C =	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$	0 0 1	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$						(2.13)
u =	u _{sa} ;	u _{sb} ;	u _{sc} ;	M _z]					(2.14)
Q _t =	$\begin{bmatrix} \mathbf{q}_1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	0 q ₁ 0 0 0	$\begin{array}{ccc} 0 & 0 \\ 0 & 0 \\ q_1 & 0 \\ 0 & q_2 \\ 0 & 0 \end{array}$	$\begin{bmatrix} 0\\0\\0\\0\\q_3 \end{bmatrix},$	$\mathbf{R}_{t} = \begin{bmatrix} \mathbf{r}_{1} & 0 \\ 0 & \mathbf{r}_{1} \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ r_1 \end{bmatrix}$			(2.15)

Čtyři parametry jsou tak experimentálně nastavovány: q1, q2, q3, r1.

2.2 Kalman filtr – stavové magnetické toky

Jelikož reálný motor pracuje dle nelineární magnetizační charakteristiky, je předcházející model nepřesný. Zpřesnění přináší model, kde je uvažován nekonstantní, nesinusový průběh magnetické indukčnosti a indukovaného napětí. Tento matematický model je obecně dán:

$$u_{sa} = R_s i_{sa} + d\psi_{Isa} / dt + u_{ia}$$
(2.16)

$$u_{sb} = R_s i_{sb} + d\psi_{Isb} / dt + u_{ib}$$
(2.17)

$$u_{sc} = R_s i_{sc} + d\psi_{Isc} / dt + u_{ic}$$
(2.18)

(2.19)

$$u_i = \omega_r \psi_i$$

, kde

$$\begin{aligned} \psi_{Isa} &= \left(L_{s\sigma} + l_{ha}\right)i_{sa} + l_{ba}i_{sb} + l_{ca}i_{sc} \\ \psi_{Isb} &= l_{ab}i_{sa} + \left(L_{s\sigma} + l_{hb}\right)i_{sb} + l_{cb}i_{sc} \\ \psi_{Isc} &= l_{ac}i_{sa} + l_{bc}i_{sb} + \left(L_{s\sigma} + l_{hc}\right)i_{sc} \end{aligned}$$

$$(2.20)$$

Z důvodu problematického měření vzájemných indukčností je přijat ideální předpoklad:

$$l_{ab} = l_{ac} \cong -0.5 l_{ha}$$

$$l_{ba} = l_{bc} \cong -0.5 l_{hb} ,$$

$$l_{ca} = l_{cb} \cong -0.5 l_{hc}$$

$$(2.21)$$

a dále

$$l_{ha} = l_{h(\mathcal{G})}, l_{hb} = l_{h(\mathcal{G}+240^{0})}, l_{hc} = l_{h(\mathcal{G}+120^{0})}.$$
(2.22)

Vztah pro magnetický tok pak přechází na tvar:

$$\psi_{Isa} = (L_{s\sigma} + l_{h(g)})i_{sa} - 0.5l_{h(g+240^{\circ})}i_{sb} - 5l_{h_{s}}i_{sc} - 0.5l_{h_{s}}i_{sc}$$

$$\psi_{Isb} = -0.5l_{h(g)}i_{sa} + (L_{s\sigma} + l_{h(g+240^{\circ})})i_{sb} - 0.5l_{h(g+120^{\circ})}i_{sc}$$

$$\psi_{Isc} = -0.5l_{h(g)}i_{sa} - 0.5l_{h(g+240^{\circ})}i_{sb} - (L_{s\sigma} + l_{h(g+120^{\circ})})i_{sc}$$
(2.23)

sloupcový vektor stavu

 $\boldsymbol{x}_{t} = \begin{bmatrix} \boldsymbol{\psi}_{Isa}; \quad \boldsymbol{\psi}_{Isb}; \quad \boldsymbol{\psi}_{Isc}; \quad \boldsymbol{\omega}_{m}; \quad \boldsymbol{\vartheta} \end{bmatrix}$ (2.24)

sloupcový vektor měření

$$y_t = \begin{bmatrix} \psi_{Isa}; & \psi_{Isb}; & \psi_{Isc} \end{bmatrix}.$$
(2.25)

Diskretizovaná forma stavových rovnic pomocí Eulerovy metody prvního řádu s krokem diskretizace Δt je dána:

Rev.1 Prosinec 2015

$$\begin{split} \psi_{\mathrm{Isa}_{t+1}} &= \psi_{\mathrm{Isa}_{t}} + \left[u_{\mathrm{sa}} - R_{\mathrm{s}} i_{\mathrm{sa}_{t}} - u_{\mathrm{ia}} \right] \Delta t + \xi_{\psi_{\mathrm{Isa}_{t}}} \\ \psi_{\mathrm{Isb}_{t+1}} &= \psi_{\mathrm{Isb}_{t}} + \left[u_{\mathrm{sb}} - R_{\mathrm{s}} i_{\mathrm{sb}_{t}} - u_{\mathrm{ib}} \right] \Delta t + \xi_{\psi_{\mathrm{Isb}_{t}}} \\ \psi_{\mathrm{Isc}_{t+1}} &= \psi_{\mathrm{Isc}_{t}} + \left[u_{\mathrm{sc}} - R_{\mathrm{s}} i_{\mathrm{sc}_{t}} - u_{\mathrm{ic}} \right] \Delta t + \xi_{\psi_{\mathrm{Isc}_{t}}} \\ \omega_{\mathrm{m}_{t+1}} &= \omega_{\mathrm{m}_{t}} + \xi_{\omega_{\mathrm{m}_{t}}} \\ \theta_{t+1} &= \theta_{t} + \omega_{\mathrm{m}_{t}} p_{\mathrm{p}} \Delta t + \xi_{\theta_{t}} \end{split}$$

$$(2.26)$$

Daný model tedy přepokládá nulovou změnu rychlosti v rámci periody vzorkování.

Vlastní filtr pak využívá následujících výpočtů:

$$P_{t}^{-} = AP_{t-1}^{+}A^{T} + Q_{t}$$

$$K_{t} = P_{t}^{-}C_{t}(C_{t}P_{t}^{-}C_{t}^{T} + R)^{-1}$$

$$P_{t}^{-} = (I - K_{t}C_{t})P_{t}^{-}$$

$$\hat{x}_{t} = A\hat{x}_{t-1} + Bu_{t-1} + K_{t}(y_{t} - \hat{y}_{t-1})$$
(2.27)

, kde

$$A = \begin{bmatrix} 1 - R_{s}\Delta t & 0 & 0 & -p_{p}\psi_{ia}\Delta t & 0 \\ 0 & 1 - R_{s}\Delta t & 0 & -p_{p}\psi_{ib}\Delta t & 0 \\ 0 & 0 & 1 - R_{s}\Delta t & -p_{p}\psi_{ic}\Delta t & 0 \\ \frac{\psi_{ia}\Delta t}{J} & \frac{\psi_{ib}\Delta t}{J} & \frac{\psi_{ic}\Delta t}{J} & 1 & 0 \\ 0 & 0 & 0 & p_{p}\Delta t & 1 \end{bmatrix}$$
(2.28)

$$B = \begin{bmatrix} \Delta t & 0 & 0 & 0 \\ 0 & \Delta t & 0 & 0 \\ 0 & 0 & \Delta t & 0 \\ 0 & 0 & 0 & -\frac{\Delta t}{J} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
(2.29)
$$C = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$
(2.30)

$$\mathbf{u} = \begin{bmatrix} \mathbf{u}_{sa}; & \mathbf{u}_{sb}; & \mathbf{u}_{sc}; & \mathbf{M}_{z} \end{bmatrix}$$
(2.31)
$$\mathbf{Q}_{t} = \begin{bmatrix} q_{1} & 0 & 0 & 0 & 0 \\ 0 & q_{1} & 0 & 0 & 0 \\ 0 & 0 & q_{1} & 0 & 0 \\ 0 & 0 & 0 & q_{2} & 0 \\ 0 & 0 & 0 & 0 & q_{3} \end{bmatrix}, \quad \mathbf{R}_{t} = \begin{bmatrix} r_{1} & 0 & 0 \\ 0 & r_{1} & 0 \\ 0 & 0 & r_{1} \end{bmatrix}$$
(2.32)

Čtyři parametry jsou tak experimentálně nastavovány: q₁, q₂, q₃, r₁.

Prosinec

2015

Rev.1

3 Experimentální ověření

Testovaný pohon je principiálně znázorněn na následujícím blokovém schématu:

Obr.3.1 Blokové schéma – bezsenzorové řízení s Kalmanovým filtrem v abc

Základem řízení je vektorová struktura v kartézských souřadnicích orientovaných na rotorový magnetický tok.

Dané řízení je ovládáno nadřazenou smyčkou otáček ω_{rw} , která je řízena PI regulátorem R ω . Výstupem R ω je q složka statorového proudu I_{sqw}, která je přímo úměrná momentu motoru. Moment (I_{sqw}) a magnetický tok statoru (I_{sdw}) jsou řízeny PI regulátorem RI_{sd} a RI_{sq}. Blok výpočtu napětí předvypočítává napětí statoru v ustáleném stavu dle zjednodušených rovnic motoru v rotorových souřadnicích. Dále je zde odbuzovací smyčka s regulátorem hloubky modulace R_{Urm}, která zdává hodnotu proudu I_{sdw}. Ten je přímo úměrný mg. toku stroje. Napětí statoru U_{sa, b, c} není měřeno, ale je vypočteno z fázových napětí střídače.

Experimentální ověření navrhovaného bezsenzorové řízení s EKF bylo provedeno na zmíněném laboratorním prototypu IPMSM o jmenovitém výkonu 4 kW, jehož parametry jsou uvedeny v příloze.

Parametry byly stanoveny v souladu se simulací s výjimkou regulátoru otáček, kde je proporcionální zesílení změněno na K_p = 0,05 a integrační časová konstanta na Tr = 0,5s. Řídící jednotka je vybavena procesorem s plovoucí řádovou čárkou od firmy Texas Instruments TMS320F28335 a byla implementována v C kódu. U_{sa, b, c} fázová napětí statoru se neměří, ale jsou rekonstruovány z referenčních signálů PWM a měřeného stejnosměrného napětí na kondenzátoru. Vzhledem k tomu, že nelinearity napěťového střídače výrazně ovlivňují odhad kolem nulové rychlosti, byly kompenzovány napěťové úbytky na polovodičích. Nicméně, mrtvé časy nebyly kompenzovány z důvodu absence běžných hardwarových komparátorů. Dle simulačních testů byla testována pouze varianta s magnetickými toky ve stavu, jelikož vykazovala mírně přesnější odhad (pozorovaný na reziduích) a výpočet je jednodušeji implementován v porovnání s první založenou na proudech.

Z pohledu implementace řízení. Vstupní veličiny závislé na poloze rotru (nesinusový tvar) jsou zajištěny pomocí Furierovy řady viz příklad indukovaného napětí ve fázi a:

Fa=-0.19*cos(th)-1.828*sin(th)-0.0879*cos(th*3.)-0.283*sin(th*3.)-0.014*cos(th*5.)-0.021*sin(th*5.);.

Vlastní algoritmus Kalmanova filtru byl implementován v předvypočtené formě, kdy jednotlivé maticové rovnice byli pomocí symbolické knihovny Matlabu upraveny do tvaru součtu mnoha součinů, kde společné části jsou počítány pouze jednou.

Vektorové řízení a napěťový střídač pracují s referenční PWM 4kHz, vzorkovací frekvencí výpočtu a měření 8kHz (125µs)), V-A charakteristiky tranzistorů použité pro kompenzaci napěťových úbytků jsou implementovány proložením prahovým napětím a lineární charakteristikou definovanou odporem (směrnice přímky), dead-time byl nastaven na hodnotu 3µs a meziobvod je napájen konstantním napětím U_c. Proudové regulátory byly naladěny s překmitem (skutečné proudy odpovídají požadovaným – ideální funkce vektorového řízení). Proporční zesílení je tedy K_p = 5, časová konstanta integrace T_r = 0,001s. Parametry otáčkového regulátoru R_{ω} jsou: K_p = 0,05, T_r = 0,5. Chování Kalmanova filtru bylo ověřeno na reverzaci pohonu s trojúhelníkovým tvarem s maximálními hodnotami ±80rad.s⁻¹. Postup nastavení filtru (volba, zjištění konstant q₁, q₂, q₃, r₁) byl zvolen jako u simulace od otevřené smyčky, kdy estimační algoritmus pouze sleduje řízení s fyzickým čidlem polohy až po uzavřenou smyčku. Výsledky simulace uzavřené smyčky s nastavením: q₁ = 0,0008, q₂ = 1,3, q₃ = 0,9, r₁ = 0,1.

Obr.3.2 Výsledek experimentu – *a) reverzace pohonu* $\omega_r = \pm 80 \text{ rad/s}$, *b) zvětšení okolo nulové polohy* K1: estimovaná poloha rotoru θ_e [180°/d], K2: poloha rotoru θ [180°/d], K3: elektrická úhlová rychlost rotoru ω_r [40,8rad.s⁻¹/d], K4: estimovaná elektrická úhlová rychlost rotoru ω_{re} [40,8 rad.s⁻¹/d]

Druhý experiment upozorňuje na chování při nízkých otáčkách. Požadovaná hodnota je 0,5 Hz v elektrické úhlové míře.

Obr.3.3 Výsledek experimentu – *nízká rychlost* $ω_r = 3.14 \text{ rad/s} - \text{estimované a skutečné veličiny}$ K1: estimovaná poloha rotoru ϑ_e [180°/d], K2: poloha rotoru ϑ [180°/d], K3: elektrická úhlová rychlost rotoru ω_r [40,8rad.s⁻¹/d], K4: estimovaná elektrická úhlová rychlost rotoru ω_r [40,8 rad.s⁻¹/d]

Obr.3.4 Výsledek experimentu – nízká rychlost $\omega_r = 3.14 \text{ rad/s} - \text{chybové signály}$

K1: poloha rotoru ϑ [180°/d], K2: elektrická úhlová rychlost rotoru ω_r [81,6rad.s⁻¹/d], K3: chyba polohy rotoru $\Delta \vartheta$ [47°/d], K4: chyba elektrické úhlové rychlosti rotoru $\Delta \omega_r$ [20,4 rad.s⁻¹/d]

Odhad vykazuje okolo 15° chybu pozice. Při této rychlosti, motor začne krokovat a odhad modelu poskytuje trvalou odchylku, jelikož metody založené na modelu mají omezení v nulové rychlosti. Implementovaný algoritmus vykazuje délku výpočetního času 90µs, což je možné upočítat se vzorkovací periodou 125µs s hraniční bezpečnou rezervou.

4 Závěr

Tato zpráva předkládá experimentální rozbor bezsenzorového řízení s Kalmanovým filtrem s modelem ve fázových souřadnicích. Fázové souřadnice byly zvoleny z důvodu možnosti modelovat veškeré nesymetrie motoru. Dle daných výsledků však nebyl zjištěn významný rozdíl jak dvou přístupů v abc souřadnicích tak vůdči modelu pro základní harmonické. Malé přispění je vidno v nízkých otáčkách, kde se základní veličiny (první harmonické) pro daný motor značně liší od skutečných.

Příloha 1

Parametry motoru

TABULKA: PARAMETRY MOTORU

Jmenovitý výkon	$P_N = 4 \mathrm{kW}$
El. odpor statoru (25°C)	$R_s = 1.2 \ \Omega$
Počet pólpárů	$p_p = 3$
Jmenovitý statorový proud	$I_{sN} = 8.15 \text{ A}_{rms}$
Jmenovitá rychlost	$n_N = 1500 \text{ rpm}$
Napětí stejnosměrného meziobvodu	U_{cN} = 560 V

Testovaný IPMSM s tangenciálně uloženými vnitřními magnety

Průběhy indukovaného napětí a hlavní fázové indukčnosti ($U_i = f(\vartheta, \omega_r), I_h = f(\vartheta, I_s)$).

Obr.4.5 Měřené indukované napětí $-f_s = 25Hz a)$ časový průběh, b) frekvenční spektrum

Obr.4.6 Hlavní fázová indukčnost – $i_{sa} = 2A$

Historie revizí

Boy	Kewitele	Donio změny	Datum
Rev.	Kapitola	Popis zmeny	Jméno / Odd.
1	Všechny	Publikování dokumentu	30. 12. 2015
1	vsechny		DU / RICE