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1 Introduction   

In recent years, the research activity in the electrical machines diagnosis area has 
experienced spectacular dynamism. This has been partially due to the incorporation of these 
elements in a vast number of industrial processes and applications. Moreover, these 
elements are often critical in those processes in which they operate. Large motors and 
generators, whose eventual failures may lead to severe repercussions in economic terms 
(repair costs and production shutdowns) as well as other less tangible costs (customer 
delivery delays, user hazard, and efficiency reduction) are particularly key issues for industry. 
All of these factors have justified increasing efforts to develop new techniques able to detect 
the development of any faults sufficiently in advance. 

Traditionally, induction machines (IM) have attracted the most attention in electric 
machine fault diagnosis research due to their widespread usage. Now, other types of 
rotating electrical machines, such as permanent magnet synchronous machines (PMSM) and 
externally excited synchronous machines (EESM) are increasingly being used. This is due to 
the emergence of many applications (power generation, electric vehicles, cranes, elevators, 
high-speed trains, etc.). Consequently, the importance of new research lines in the 
aforementioned area is quickly increasing. 

Faults of electrical machines can be classified into three categories: stator faults, 
rotor electrical/magnetic faults, and rotor mechanical faults. Other possible faults can be 
external faults due to incorrect connection of stator winding, failure of supply, etc. Main 
failures of electrical machines can widely be arranged as follow: 

➢ Stator faults which are defined by open circuit, intern turn short circuit or short 
circuit phase; 

➢ Rotor electrical/magnetic faults which include rotor winding open or short circuited 
for wound rotor machines, broken bar(s) or cracked end-ring for squirrel-cage 
machines and demagnetization of permanent magnet for permanent magnet 
synchronous machines; 

➢ Rotor mechanical faults such as bearing damage, eccentricity (static/dynamic), bent 
shaft, and misalignment. 

For the purpose of detecting such faults, many diagnosis methods have been 
developed so far. They can be categorized into offline testing and online monitoring 
methods. The former methods (offline testing methods) need to stop machines before any 
testing, and the later ones (monitoring methods) examine the machine while it is still in 
operation. In relation to sensor installation, diagnosis methods are grouped into non-
intrusive and intrusive methods. The difference between two approaches is that while the 
non-intrusive methods require only measured stator voltages and currents, the intrusive 
methods require additional sensors for measuring other physical quantities such as 
vibration, flux, etc. 

For the applied techniques, monitoring methods can be divided into four 
fundamental categories [1]: 

➢ Sequence component analysis based diagnosis; 
➢ Model based diagnosis; 
➢ Signal based diagnosis;  
➢ Artificial intelligence based diagnosis. 
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Signal processing is an enabling technology for the four methods diagnostic but with 
different impact and role. Moreover, with advances in digital technology over the last few 
years, adequate data processing capability is now available on cost-effective hardware 
platforms. They can be used to enhance the features of diagnostic systems on a real-time 
basis in addition to the normal machine protection functions. 

 

2 Signal processing techniques 

Faults detection takes place mainly in five different ways: temperature 
measurements, chemical measurements, mechanical vibration measurements, electrical 
measurements (current, voltage, flux, electromagnetic torque), and partial discharge 
detection. The most interesting technique is based on electrical measurements mainly 
because they are readily available in the power converter and for signal processing. 

Measured quantities are processed in order to retrieve diagnostic induces related to 
the faults. The signal processing can be classified into three main classes: 

1. Time-domain techniques; 
2. Frequency-domain techniques; 
3. Time-frequency domain techniques 

Another major difference is the nature of the signal that may be stationary or non-
stationary. 
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2.1 Time-domain methods 

Time-domain methods are implemented through checking abnormal changes of 
interesting machine features along with time. These methods usually have advantages of 
simple calculation and implementation, but they generally suffer from low fault sensitivity. 
Thus, they could encounter difficulties when measuring fault indicative components of 
incipient faults or in noisy environments. Two main focuses of recent time-domain methods 
are finding fault sensitive time-domain features and increasing fault detectability. 

 

Abbreviation Faults detection diagnostic methods 

CSVA Current space vector analysis 

HFSI High frequency signal injection 

K-L Kullback-Leibler 

PDF Power density function 

TCLA Three-phase current locus analysis 

TSZC Time between successive zero crossings 

TG Thermography 

Table 1: Abbreviation of faults detection diagnostic of Time-domain methods. 

 

2.2 Frequency-domain methods 

Frequency-domain techniques are widely adopted in machine diagnosis. Machine 
faults generate additional frequency components in various spectra due to resultant periodic 
vibrations of mechanical forces and air-gap spacing. The spectra include data signatures 
directly related to either electrical or mechanical faults and allow to perform a quantitative 
analysis of the fault severity. The most commonly adopted solution is referred to as MCSA 
(Machine Current Signature Analysis). Many diagnostic techniques are based on spectral 
analysis, most of them operating with one machine line current, others with flux, voltage 
(MVSA: Machine Voltage Signature Analysis used for synchronous generators), torque or 
vibration signals. 

 

Abbreviation Faults detection diagnostic methods 
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ESPRIT Estimation of signal parameters via rotational invariance technique 

FFT Fast Fourier transform 

HFTA High frequency transient analysis 

HOTA Harmonic order tracking analysis 

MUSIC Multiple signal classification 

MM Mathematical morphology 

REA Reduced envelop analysis 

SAA Simulated annealing algorithm 

SEA Squired envelop analysis 

SST Spectrum synch technique 

TK Teager-Kaiser operator 

WLC Weighted linear combination 

Table 2: Abbreviation of faults detection diagnostic of Frequency-domain methods. 

 

2.3 Time-frequency domain methods 

Time-frequency analysis consists of the 3-D time frequency, and amplitude 
representation of a signal, which is inherently suited to indicate transient events in the 
signal. Advanced signal processing techniques in time-frequency domain are not able for 
superiority in dealing with non-stationary signals. These methods provide more accurate 
inspection of a machine's dynamic features via continuous spectral analysis using a small 
moving time window, where non-stationary signals are treated as constant. Tradeoffs of 
these detailed inspections are more complex computation and implementation. 

 

Abbreviation Faults detection diagnostic methods 

CWT Continuous wavelet transform 

DWT Discrete wavelet transform 

EMD Empirical model decomposition 

HED Hybrid ensemble detector 

IMF Intrinsic mode function 

PPT Polynomial-phase transform 

PSHT Principal slot harmonic tracking 

STFT Short-time Fourier transform 

WPT Wavelet packet transform 

WPD Wavelet packet decomposition 
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WT Wavelet Transform 

XWT Cross wavelet transform 

HHT Hilbert-Huang transform 

Table 3: Abbreviation of faults detection diagnostic of Time-Frequency-domain methods. 

 

 

3 Diagnosis methods for electrical machines 

3.1 Testing methods 

The term “testing” implies that they require specific devices/signals to test the 
machine and it is stopped from service. Usually, the testing methods can provide direct and 
accurate diagnosis results. Insulation resistance [2], polarization index [3], voltage surge [4], 
and partial discharges [5] tests are among the most common methods in industry. The two 
former methods are suitable for machines rated 400 V and above while the others are fitting 
for those rated at least 4 kV [6]. 

In the insulation resistance test, a DC voltage is applied between the winding copper 
and ground and the insulation resistance is calculated as the ratio between this voltage and 
the resultant current. The specific values of the applied voltage and the resistance threshold 
for evaluating the insulation condition follow industrial standards such as IEEE 43-2000 and 
NEMA MG1-1993. This insulation resistance method has simple test procedure. Nonetheless, 
it depends strongly on the operational temperature.  

The polarization index can be used to overcome this drawback. It measures the time 
required for molecules of insulation to polarize in order to resist the flow of current. 
Therefore, it can be used for assessing the capability of ground wall insulation to polarize. It 
is calculated as the ratio of the insulation resistance at one-minute and ten-minute 
instances. The specific value of polarization index for testing is available at several standards 
such as IEEE 43-2000. Due to it easy implementation, this testing method is widely used. 
However, it is mainly used for testing phase-to-ground insulation.  

The voltage surge test applies a high voltage between the tested turns, and hence, 
can probe inter-turn fault. The premise of this test is to create a voltage surge between the 
winding to charge and discharge the winding capacitor subsequently. Since the capacitor and 
the machine forms a RLC-series circuit, if the inter-turn insulation is deteriorated at certain 
level, there will be a change in the frequency and the magnitude of the impulse response. 
Although this method can test inter-turn fault, it has appearance drawback that the life time 
of the tested machine can reduce significantly due to effect of voltage stress.  

The other method is the partial discharges test, in which an AC external voltage is 
applied between the winding and ground. This method requires an additional device to 
measure the partial discharges. In addition, it is only applicable to medium and high-voltage 
machines since the voltage magnitudes in low-voltage machines may not be high enough to 
generate a proper partial discharges indicator. 

Insulation resistance, polarization index, voltage surge, and partial discharges tests 
are standardized for medium and high-voltage machines. However, they are not 
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standardized for low-voltage machines. In addition, they are more suitable for testing 
purpose, i.e., to check if a machine is at healthy or failure conditions other than to 
continuously monitor the condition of a machine. High frequency impedance/inter-turn 
capacitance method [7] has the similar nature with the voltage surge test by exploiting the 
inter-turn capacitance effect for fault diagnosis. It is based on the principle that if a high 
frequency signal is injected in the stator winding and the frequency is close to the series 
resonance frequency of the system, the induced flux caused by the structured high 
frequency signal will vary the phase lag between the flux and the injected signal. Actually, 
this change represents the change in the resonance frequency caused by the corresponding 
change in the inter-turn capacitance. This has the advantage of considering the capacitance 
effect, which is neglected by most of other research. Nonetheless, the significant 
disadvantage of this method is its invasive nature requiring the injection of high frequency 
signal. 

For the past few decades, various monitoring methods have been proposed for 
detecting faults in electrical machines based on different characteristics and behaviors of 
faulty machines. Moreover, due to the multi-physics nature of electrical machines, different 
physical quantities have been applied for generating diagnosis indicators. 

 

3.2 Monitoring methods 

3.2.1 Sequence component analysis based diagnosis 

Symmetry analysis is one of the most common methods for fault diagnosis of rotating 
electrical machines and power systems. Under the healthy condition, the stator windings are 
symmetrical, and hence, the stator currents are also balanced. However, under the faulty 
condition, the stator windings are no longer symmetrical. As a result, the stator currents 
become imbalanced. Therefore, asymmetrical property of stator currents can be exploited 
for fault diagnosis. The sequence component analysis is the tool of symmetry analysis. The 
concept of sequence components analysis is proposed in [8]. Considering an induction 
machine (IM) of three phases, the sequence component analysis decomposes the multi-
phase quantities such as stator currents, stator voltages, impedance in term of positive-
sequence, negative-sequence, and zero-sequence components. Assuming three-phase 
quantities, such as the currents of stator phase a, phase b, and phase c, are represented by 
rotating vectors A, B, C, respectively. The positive sequence components are A+, B+, C+ of 
same magnitudes and 120o in phase difference, and rotating in clock-wise direction. On the 
other hand, the negative sequence components are A-, B-, C- of same magnitudes and 120o 
in phase difference, but rotating in the counter clock-wise direction. The zero sequence 
components A0, B0, C0 are static and identical vectors. The original vectors A, B, C can be 
derived back from the vector sum of their sequence components. Different quantities can be 
used in symmetry-based method. The most common quantity is the stator currents (the 
symmetry-based method is not only using current, but also other quantities (voltage, 
impedance)). One of the pioneering research exploring the sequence components of stator 
current for fault diagnosis is presented in [9]. In this work, it shows that the negative 
sequence current is less sensitive to speed variation. In [10] [11], both the magnitude and 
phase of negative and zero-sequence currents are proposed as fault indicators. The 
magnitude is used for evaluating the fault severity, while the phase is used to identify the 
faulty phase. However, the method is more suitable to balanced voltage supplies. In [12], the 
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negative sequence stator current is found as sensitive to inherent motor asymmetry, supply 
voltage imbalance, and measurement errors. In [13], it is shown that the effects of both the 
supply voltage imbalance and fault are actually nonlinear. The negative sequence stator 
current becomes even more balanced under fault. Sequence components of higher order 
harmonic of stator current is also studied. In [14], a technique using the positive and 
negative-sequence third-harmonic components of line currents to identify the effect of 
inherent asymmetry. However, the estimated severity is not fully monotonic. The symmetry-
based method has been also found in other electrical machines, such as permanent magnet 
synchronous machine (PMSM). Due to its high efficiency and high torque density, PMSM is 
widely used in modern wind energy conversion system and transportation system. The zero 
sequence voltage component and zero sequence current are applied in [15]. The negative 
sequence component is investigated in [16]. The sequence components are also used in [17], 
in hybrid approach, i.e., combining with Neural network, Fuzzy logic, or model-based 
methods. In overall, the symmetry-based method are non-intrusive, as only the 
measurements of terminal quantities are required. In addition, it provides a simple medium 
to model and analyze the asymmetrical characteristic of machines. However, the challenge 
with this technique is to discriminate the effect of fault from that of inherent asymmetry and 
voltage imbalance in a simple implementation. 

 

3.2.2 Model based diagnosis 

Model-based diagnosis was originated by Beard [18] in 1971 in order to replace 
hardware redundancy by analytical redundancy. In model-based methods, the models of the 
industrial processes or the practical systems are required to be available, which can be 
obtained by using either physical principles or systems identification techniques. Based on 
the model, fault diagnosis algorithms are developed to monitor the consistency between the 
measured outputs of the practical systems and the model-predicted outputs. Model-based 
diagnosis methods are classed in four categories: deterministic fault diagnosis methods, 
stochastic fault diagnosis methods, fault diagnosis for discrete-events and hybrid systems, 
and fault diagnosis for networked and distributed systems, which are classified in terms of 
types of the models used. It can also be classified as observer-based, parity equation, and 
parameter estimation approaches. Thanks to advance in control theory and control system 
applications, model-based diagnosis provides abundant tools for both robustness and 
sensitivity fault diagnosis.  

While observer-based approach aims to design an observers, which are also dynamic 
systems, but other than process itself, the parity equation directly explores the process 
model, to form the residual. On the other hand, the parameter estimation approach 
attempts to estimate the model parameters and examine the deviation of parameters for 
residual generation. Observer-based approach plays a significant role in model-based 
methods, and substantial research has been studied for fault detection, isolation, and 
identification. In order to achieve incipient fault detection, under disturbances due to model 
uncertainty, process noise, and measurement errors, the fault detection is formulated as an 
optimization problem. The structure and parameters of the observers is optimized to 
guarantee that the residual signal is sensitive to fault, but robust against disturbances. 
Eigenstructure assignment has been proposed [19] [20] [21] to address this problem. The 
other approach is LMI-based method applicable to both nonlinear and linear systems [22] 
[23]. For fault isolation, a bank of observers are required. The idea is to make a residual only 
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sensitive to its corresponding fault [24], or other faults [25], but robust against other faults 
and disturbances. The other idea is to decompose the different components in the residual 
signals, as discussed in [26] [27]. In fault identification, the observer-based approach is 
applied to estimate the fault parameters. They are modelled as augmented state variables, 
and the observer estimate both the states and fault parameters simultaneously. The 
approach is presented in [28] [29] [30] to name a few.  

Parameter estimation approach tries to estimate the process parameters and 
compare them with the normal values for fault diagnosis. In the approach, the measured 
inputs and outputs, and model structure are employed for parameter estimation. The fault 
diagnosis is also formulated as optimization problem in which either equation or output 
error is minimized. Depending on the complexity of the problem, either direct estimation of 
the parameters or numerical optimization methods are required [31]. Parameter estimation 
has been found in applications where process parameters are closely linked to physical 
conditions or structure of the system, such as aerospace systems, as presented in [32]. 

The essence of parity equation approach is to check the consistency between the 
models and measured, i.e., process outputs [33]. The similarity of parity equation to observe 
base approaches has been discussed in [34]. In the parity equation approach, the residuals 
are under effect of model uncertainty, process noise, besides faults. However, the approach 
allows the flexibility to reorganize the model structure to improve the fault detection and 
isolation. 

In Deterministic Fault Diagnosis Methods, Observer plays a key role in model-based 
diagnosis for monitored systems/processes characterized by deterministic models. 

In parallel with the development of the fault diagnosis for deterministic systems, 
stochastic approaches were also developed for fault diagnosis in the early 1970s. The basis 
of the approach is to monitors the mean and variance of the innovation of a Kalman Filter. 
The fault is detected and diagnosed based on the statistical tests thereby. Similar to 
observer-based approach, banks of filters are applied for fault isolation and identification. 
Multiple model adaptive estimation (MMAE) is based on the idea of multiple models in order 
to estimate the probability for each model, providing confidence level to achieve fault 
isolation, as proposed in [35]. Further research studies have led to a couple of modified 
Kalman filter techniques for fault diagnosis, such as extended Kalman filters (EKF), unscented 
Kalman filters (UKF), adaptive Kalman filters, and augmented state Kalman filters. 

Model-based methods of parameter estimation, observer design, and parity equation 
are applied for fault diagnosis of electrical machines. Related the models, dq-axis, sequence 
component analysis, and state-space models have been used. 

Dq-model has been applied to analyze the behavior of an induction machine under 
fault, and also for fault indicator generation. In [36], a dq-model, which models a fault 
simultaneously occurring on multiple phases, is proposed. The parameter estimation, based 
on output error technique, is employed. Both the motor and fault parameters are estimated, 
and the fault phases are identified. The experimental results show interesting point that the 
change of motor parameters is negligible, while the fault parameters are more noticeable. 
However, the research is limited to the pure inter-turn fault, i.e., small value of fault loop 
resistance, representing relatively high severity level. In [37], both local and global search 
method has been applied to estimate the fault parameters and identify the faulty phase and 
compared. The local method applies the techniques of gradient descent and nonlinear least 
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squares, while the global search method is based on pattern search method. It is shown that 
the global search method is insensitive to initial search and can converge to the global 
minima. However, its drawback is more computation time. Noise is added to the data to 
analyze the robustness of the methods. However, similar to many other works, the fault 
resistance is omitted in the work, implying that the research do not cover incipient fault 
represented by fault loop resistance component. In [38], an estimation method based on 
particle swarm optimization is proposed. The third harmonic component in the supply line 
current is used as the input for the estimator to estimate the percentage of shorted turn. In 
[39], the particle swam and bacterial foraging optimization have been explored for fault 
detection and severity estimation, and also faulty phase identification. The both methods 
have the advantage of not requiring prior knowledge of fault signatures. Nonetheless, they 
own inherent drawback of computational expensiveness. 

In [40], EKF is applied for parameter and state estimations of brushless wound field 
synchronous generator (called also externally excited synchronous generator). The rotor 
field current, damper bar currents, and fault parameters are estimated in the work. Based on 
the estimates, the fault signatures of stator winding inter-turn short fault under load 
imbalance is proposed. The paper also helps demonstrates the advantage of KF-based 
approach on estimating unmeasurable quantities. 

In [41], the sensor fault detection and isolation of interior permanent magnet 
synchronous machine is proposed, based on EKF. Three types of fault, which are faulty 
position sensor, DC-Link voltage sensor, and phase current sensor, are shown to be detected 
and isolated. The element of this approach is to use different quantities which are differently 
sensitive to different types of faults, and achieve the isolation thereby. However, it is 
assumed that only one sensor is faulty during operation, the probability of faults in more 
than one sensor is low though. The observer-based approach and parity equation are 
applied to calculate deviation between the simulated stator currents and measure stator 
currents. However, the effects of both non-idealities and fault are mixed in the generated 
signal. The inherent asymmetry is also not considered in this research. In addition, the 
experiment is only conducted on a small value of fault loop resistor, which implies the fault 
severity is relatively high. The system under fault is a bilinear system, in which an adaptive 
observer can be applied to estimate the fault parameters. In [42], a summary of 
disturbance/uncertainty estimation and attenuation (DUEA) techniques in PMSM drives is 
presented. It shows the existence of various DUEA techniques and the key differences 
between them. 

 

3.2.3 Signal based diagnosis 

Signal-based diagnosis utilize measured signals rather than explicit input–output 
models for fault diagnosis. The faults in the process are reflected in the measured signals, 
whose features are extracted, and a diagnostic decision is then made based on the symptom 
analysis and prior knowledge on the symptoms of the healthy systems. Signal-based fault 
diagnosis methods have a wide application in real-time monitoring and diagnosis for 
electrical machines, power converters, and mechanical components in a system in particular 
due to the abundance of signals and signal processing techniques. In electrical machines, the 
signals consist of stator current, voltages, axial and radial flux, electromotive force, vibration 
signal, and torque. 
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MCSA (Machine Current Signature Analysis) is one of the most commonly used 
method due to its non-intrusive and non-invasive nature and requiring only stator current 
measurement. The rotor slots harmonics [43], third harmonic [44], the lower sideband of 
field rotational frequency with respect to the fundamental frequency, the components 
relating to slots [45], suggest certain types of frequencies for fault detection. The study in 
[44] provides a detailed analytical analysis, using winding function approach, to arrive at the 
conclusion that under stator winding inter-turn short fault, there is no new frequency 
components emerging in the stator current spectrum, but only the rise in some frequency 
components instead. In the research, it is also verified by experiments. It is shown that these 
fault indicative frequency components are sensitive to voltage supply imbalance. In addition, 
the third harmonic is proved as a not reliable indicator because it also appears under 
magnetic saturation. Moreover, it is sensitive to machine non-idealities. A method using the 
positive and negative-sequence third harmonic components of line currents to address the 
effect of inherent asymmetry is proposed in [14]. However, the estimated severity is not 
fully monotonic. 

Therefore, while MCSA is widely applied and easy to implement, it tends towards 
being fairly sensitive to voltage imbalance and machine non-idealities. The harmonics of 
stator voltages are also studied in [46] [47]. The rotor-slot-related harmonics, the third and 
other triple-related harmonic of terminal voltages switched off, are proven to be effective 
indicators for detecting stator winding inter-turn short fault. Because the fault signatures are 
calculated from the measured terminal voltages after they are switched off, there is no 
effect of voltage imbalance to the fault signatures. Due to this advantage, the method has 
potential to detect early fault, to extend of a few number of shorted turns. However, since 
the method is based on the transient voltages, it is only applicable to certain operational 
circumstances. 

Axial leakage flux has been also used for fault detection. In [48], the flux is proposed, 
as the occurrence of inter-turn fault is associated to the flux. The premise of the approach is 
that the machine asymmetry, caused by stator winding inter-turn short fault, brings about a 
change in the air gap space harmonic distribution, which is rejected in the axial leakage flux. 
In details, when stator winding inter-turn short fault occurs, it establishes a closed-loop, and 
the circular current in the loop generates Electromagnetic Force (EMF). This results in a 
corresponding Magneto-Motive Force (MMF) pulse, superimposing on the main field 
distribution. This in turn modifies the harmonic of axial leakage flux. The spectrum 
component of voltage induced by leakage flux in the axial direction is used for fault 
diagnosis. In order to measure the leakage flux, a simple device called search coil is installed. 
Besides axial leakage flux, the leakage flux in the radial direction is also applied. For 
measuring this flux, the search coil is placed perpendicular to the machine radial direction 
near the vicinity of machine body [49]. The radial direction leakage flux based fault detection 
has been reported to be more reliable than MCSA [50]. To further improve the fault 
detectability, multiple search coils can be used to measure both axial and radial leakage 
fluxes, as presented in [51]. The flux-based method, however, is invasive and fairly 
dependent on load conditions. 

Vibration signal is a mechanical quantity but it is well-known that there is 
interrelationship between it and electrical quantities. Owning to that fact, vibration signal 
has been also proposed for fault diagnosis. The second harmonic of bearing vibration is 
investigated in [52]. The research shows that the signal can provide information involving to 
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the air-gap flux created by winding deterioration that may be unable to be captured by 
voltage and current quantities. In [53], electromagnetic anomalies in the induction motors 
based on the classical theory of electromagnetic vibration is explored. [54], complex 
wavelets is applied to discriminate stator winding inter-turn short fault from bearing fault. 
With that capability, the fault can be detected without concern of false fault detection due 
to other potential mechanical faults such as bearing and broken rotor bar faults. However, 
wavelet transform is relatively computationally expensive in general. 

Electromagnetic torque also has close link to current and flux linkage quantities, and 
hence, it has been proposed for fault detection, as proposed in [55]. Nonetheless, the 
experimental results show that their performance does not outperform the other methods 
using other physical quantities. Both vibration and torque-based methods require the 
installation of additional sensors, which makes their application are fairly limited compared 
to other non-intrusive methods. 

Besides standard techniques like Fast Fourier Transform (FFT), advanced techniques 
have been also applied for fault diagnosis. Bi-spectrum, also called third-order spectrum, is a 
high order statistics which can be suitable for detecting electrical-based faults, such as stator 
voltage imbalance [56]. Therefore, it application can be to evaluate the stator voltage 
imbalance condition or diversify to fault diagnosis of electrical faults like stator winding fault. 
Wavelet analysis is computationally expensive, but it can overcome the drawback of Fourier 
analysis, which is more suitable to stationary signals. In order to increase the resolution and 
also capture the sudden changes, wavelet is preferred, as proved in [54]. Wavelet transform 
(WT), Discrete Wavelet Transform (DWT), Continuous Wavelet Transform (CWT), Cross 
Wavelet Transform (XWT) is applied in [57] [58]. The zero crossing time signal of stator 
currents (TSZC) can be used to reduce volume of data acquisition and analysis for signature 
analysis approach [59]. The techniques based on the stator current space vector (CSVA) and 
its variances [60] [61], Park's vector modulus (PT) [62] are some other methods. In other 
works [63], techniques based on the instantaneous power is proposed. FFT combined with 
Principal component analysis (PCA) and Bayesian network is used in [64]. FFT combined with 
Discriminant Analysis (DA) is proposed in [65]. Other signal processing approaches like 
Current envelope (REA), Empirical-Mode Decomposition (EMD), Mathematical morphology 
(MM), Harmonics order tracking analysis (HOTA), Teager–Kaiser energy operator (TK), 
Estimation of signal parameters via rotational invariance technique (ESPRIT), Multiple signal 
classification (MUSIC), etc. were found in literature for fault diagnoses and severity 
evaluation [66]. 

 

3.2.4 Artificial intelligence based diagnosis 

Artificial intelligence-based diagnosis has been also applied to diagnosis of electrical 
machines. Essentially, the AI-based diagnosis consists of three mains steps, including 
signature extraction, fault identification, and fault severity evaluation, as discussed in [67]. 
With the advance of computation software and hardware, AI-based approach has been also 
received substantial attention. In addition, AI-based diagnosis can be combined with other 
methods, usually signal-based diagnosis, to improve learning model and feature extraction, 
and hence, diagnosis performance. For electrical machines, AI-based methods are also found 
more commonly applied to mechanical faults such as bearing, broken-rotor bars rather than 
stator winding fault.  



Strana  

 

   17 
 
 

One of the most known AI-based diagnosis is the expert-system. The expert system 
emerged in the late 1960s as a branch of artificial intelligence, which is a rule-based system 
by presenting a human’s expertise in a set of rules [68] [69]. Expert-system-based fault 
diagnosis was initialized in the 1980s [70], which was performed based on the evaluation of 
online monitored data in terms of a set of rules, which is learned by human experts from 
past experience. 

In [71], a hybrid feature-reduction methodology based on Artificial Neural Network 
(ANN) is proposed to classify bearing, broken-bar rotor, and stator faults. The method 
combines Fishers discriminant ratio to maximize the separability between classes and error 
probability model to select an optimal number of extracted features. ANN is also widely 
applied to fault diagnosis of bearing fault. It is used for statistical-time features in [72]. 

Another AI-based method using Support Vector Machine (SVM) technique are 
proposed to classify rotor and bearing faults in [73], respectively. 

In [74], the envelope analysis of vibration signals is explored for bearing fault 
diagnosis using FFT and PCA techniques The PCA method is also used for fault diagnosis of 
open-circuit faults in power inverters in [75].  

A Feed Forward Neural Network (FFNN) method is proposed in [76]. In the training 
stage, the negative sequence current of a healthy machine under several different load 
conditions and supply voltage imbalance is used for offline training. In other words, the 
inputs to FFNN are of terminal quantities. In the monitoring stage, the measured negative 
sequence current is compared with the estimated value by FFNN, and the deviation between 
them is the indicator of fault severity. Experimental results show the technique can detect 
the incipient fault, and also is insensitive to supply voltage imbalance. However, to obtain 
the data for offline global training is a challenge in practice. 

In [77], an ANN approach is applied to a wound-rotor induction generator. The ANN is 
trained directly by digital signals coming from sensors. Therefore, the diagnosis system can 
be implemented in a simplified architecture on a low-cost hardware. In [78], an ANN 
approach is applied to a squirrel-cage Induction Machine fed through an inverter. The 
variation of the phase shift between the phase voltages and the line currents is used for fault 
diagnosis. 

Fuzzy logic-based approach is proposed fault detection and classification. It is also 
combined with other methods in fusion approach for fault identification. In [79], fuzzy logic-
based approach based on the stator current Concordia patterns is validated as an effective 
method to detect stator fault. The fuzzy decision tree is proposed in [80] for fault 
classification of broken rotor bars and broken connector faults. The fuzzy decision tree 
approach is compared with Gaussian Mixture Models, ANN, and few other methods, and 
verified to provide better performance. The application of fuzzy logic-based approach for 
fault classification is found in [81] for bearing fault. 

The AI-based methods have the advantage of learning capability under the lacking of 
quantitative domain knowledge, i.e., mathematical model. A few works have been proposed 
to reduce the computational load and complexity, such as the application of PCA for the 
unsupervised ANN method, proposed in [67]. The AI-based techniques are, however, 
computationally expensive, and not really suitable for online implementation. 
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Abbreviation Faults detection diagnostic methods 

AAC Artificial and clustering 

CCA Curvilinear component analysis 

DA Discriminant analysis 

DFA Detrended fluctuation 

DTCWT Dual-tree complex wavelet transform 

FMM-CART Fuzzy max-min neural network using classification and regression 
tree 

FZ Fuzzy logic 

ANN Artificial Neural network 

PCA Principal component analysis 

RBF-MLP Radial basis function multilayer perceptron 

RFE Recursive feature elimination 

SVM Support vector machine 

RUWPT Recursive undecimated wavelet packet transform 

ES Expert System 

FFNN Feed Forward Neural Network 

Table 4: Abbreviation of Artificial intelligence techniques. 

 

3.3 Other approaches  

All diagnostic approaches addressed in this paper concerns line-fed electric drive 
system and inverter-fed sensored control electric drive system. Sensorless control electric 
drive system without mechanical position or speed sensors is of high interest in several 
industrial applications, such as electrical vehicles, wind turbine energy conversion systems 
(WTECSs) [82]. For example, in new integrated motor drives, with power converter inside 
the machine, the space taken by the mechanical sensor represents a major problem. Using 
sensorless control strategies permit to reduce the size, and maintenance requirements of 
the electric drive. Regarding the WTECS, generally, the system operates under severe 
environmental conditions that act on the electric drive during the operation. Hence, the use 
of mechanical sensor increases the cost and failure rate. Repairing the faulty components 
leads to a significant loss in electric power production and requires additional cost. 

Many investigations have been made so far on sensorless control electric drive 
system such as T.M Wolbank worked on sensorless control since 1993 [83]. Sensorless 
control electric drive system use the method INFORM (Indirect Flux detection by on-line 
Reactance Measurement) which works without mechanical sensors and yields hence 
cheaper and more robust drive solutions. The drive is able to produce full torque even at 
standstill without tachometer and position encoders. The basic idea is to evaluate saturation 
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effects in the motor in real-time, yielding speed-independent information about the flux 
axis. The INFORM algorithm is coupled with well-known EMF-based flux models, providing 
optimal flux information for field-oriented control over the full operating range. 

Diagnostic of sensorless control electric drive system use a kind of electrical 
excitation of the machine which may be transient or with high frequency signal. The 
response of the machine to this excitation has to be measured and evaluated during normal 
operation of the drive. This method uses a transient excitation or a high frequency signal 
injection of the machine with voltage test pulses impressed by the inverter and evaluates 
the transient current response. Only the electrical sensors which are already available in 
modern inverter fed drives are necessary to apply the method. 

Using induction machine, in [84], a method of detecting rotor-bar defect at zero load 
and almost at standstill is proposed. The method uses the standard current sensors already 
present in modern industrial inverters by applying an excitation with a voltage pulses using 
the switching of the inverter and then measuring the resulting current, a fault indicator is 
obtained. [85] Investigates the influence of pole-pair number of the mixed eccentricity 
related fault indicators extracted by means of high-frequency or transient signal injection. In 
[86] a diagnostic technique for traction motor insulation condition monitoring is presented. 

[87] present sensorless rotor temperature estimation technique for permanent 
magnet synchronous machine. The method implies an intermittent injection of a voltage 
pulse in the d-axis of the motor while keeping the load current zero. 

In the domain of power generation, EPRI (Electric Power Research Institute) develop 
many projects to improve monitoring and diagnostics of turbo-generators and hydro-
generators. In [88] a development of simplified analytical technique for electromagnetic 
signature analysis (EMSA) is in project. The objective of this project is to explore existing 
EMSA data analytical techniques and develop new techniques that can help simplify 
interpretation of data to provide actionable information for plant personnel. 
Electromagnetic Signature Analysis (EMSA) is a non-intrusive, on-line monitoring technology 
to diagnose anomalies in electrical machines. The EMSA process is used to evaluate 
electromagnetic interference (EMI) generated by anomalies in the energized electrical 
equipment. EMSA can identify sparking, arching, gap, discharge, and other types of electrical 
insulation-related anomalies in electrical equipment. The digital transformation of the power 
industry has been promoted as a significant opportunity to improve processes using digital 
tools and intelligence technologies. In the case of power generation, the practical value from 
adopting digital technologies has not been well defined. To realize value for power 
generation, in [89], a Digital Demonstration Facility (DDF) is being to: 

• Establish scaling of digital technology solutions across a plant and fleet; 

• Refine the infrastructure and resources needed to sustain connectivity and functionality of 
digital components; 

• Understand the practical value from implementing select technologies; 

• Discern good practices for evaluating and integrating new technologies into industrial 
power plant environments. 

 



Strana  

 

   20 
 
 

The “digitization” of a plant can encompass many areas and the DDF will initially 
focus the following technologies: 

• Monitoring and control hardware; 

• Computational algorithms to support process control, diagnostics and prognostics; 

• Utilization of data management and analytic platforms to support advanced analysis of 
large data sets; 

• Digitization of procedures, drawings, plant equipment and components; 

• Use of mobility and digital worker technologies. 

 

Another project of EPRI in [90] is I4GEN (Insight through the Integration of 
Information for Intelligent Generation. A key component of I4Gen is the transformation of 
data into actionable intelligence, with an ultimate goal to make the most useful information 
available at the time it is needed to perform an action. A power plant using the I4Gen 
concept produces, shares, and manages information at appropriate times, within proper 
context, and at a level of detail sufficient to support a decision/response. Adopting the 
I4Gen approach in totality will be a large and complex undertaking. In many cases, adoption 
of selected digital technology platforms and capabilities over time, with short-term tangible 
benefits, is a more realistic scenario. The I4Gen research and demonstration opportunities 
target: 

• Advanced asset management through monitoring and diagnostics; 

• Enhanced operations and maintenance through digital worker technologies; 

• Improved information management and decision-making through data analytic and 
integration including prognostics and predictive maintenance, and operational actions; 

• Quality data acquisition through low-cost sensor technologies and enhanced sensing 
capability; 

• Improved communication using data visualization to display relevant information in a 
timely manner; 

• Optimized operation and performance through adaptive controls and high levels of 
automation; 

• Greater insights and options for system, plant and fleet performance. 

 

4 Conclusion 

This paper comprehensively reviewed diagnostic techniques of AC electrical 
machines. The diagnosis methods are classified into four categories and all four categories 
use the technology of signal processing to predict and detect faults. This diagnosis methods 
concern inverter-fed sensored control electric drive systems and line-fed electric drive 
systems. 

Then, a diagnostic research advanced such as diagnostic of inverter-fed sensorless 
control electric drive systems is given. This method is based on signal injection. 
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Electric Power Research Institute (EPRI) develop projects on monitoring and 
diagnostic of synchronous generator such as development of simplified analytical technique 
for electromagnetic signature analysis (EMSA), Digital Demonstration Facility (DDF) and 
Insight through the Integration of Information for Intelligent Generation (I4GEN). 
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