

Fakulta elektrotechnická Research and Innovation Centre for Electrical Engineering

Řízení PMSM s LC filtrem pomocí LQ regulátoru

Pracoviště:	RICE
Číslo dokumentu:	22190-031-2022
Typ zprávy:	Výzkumná zpráva
Řešitelé:	Ing. Antonín Glac
Hlavní řešitel:	Prof. Ing. Zdeněk Peroutka, Ph.D.
Počet stran:	35
Datum vydání:	2.11.2022
Oborové zařazení:	2.2 Electrical engineering, Electronic engineering, Information en-
	gineering - Electrical and electronic engineering

Zadavatel / zákazník:

Zpracovatel / dodavatel:

Západočeská univerzita v Plzni Research and Innovation centre for Electrical Engineering Univerzitní 8 306 14 Plzeň

Kontaktní osoba: Ing. Antonín Glac tel. 377634108 glac@fel.zcu.cz

Tato zpráva vznikla s podporou projektu SGS-2021-021

Anotace

Tato výzkumná zpráva se zabývá popisem řízení synchronního motoru s permanentními magnety (PMSM) připojeného k měniči přes LC filtr. Využívá kombinaci lineárně-kvadratického (LQ) regulátoru, který vypočítává požadované napětí, a PWM modulátoru pro generování spínacích pulzů měniče.

Klíčová slova

IPMSM, LQ regulátor, LC filtr,

Název zprávy v anglickém jazyce / Report title

LQ Control of PMSM with LC filter using PWM modulator

Anotace v anglickém jazyce / Abstract

This research report deals with PMSM equipped with LC filter control using Linear-Quadratic (LQ) controller. Reference output of the LQ controller is set to PWM modulator.

Klíčová slova v anglickém jazyce / Keywords

IPMSM, LQ controller, LC filter,

Seznam symbolů a zkratek

DSP	Digitální signálový procesor
LQ	Lineárně kvadratický regulátor
IM	Asynchronní motor (Induction Motor)
IPMSM	Synchronní stroj s vnitřními perm. magnety
МТРС	Optimální křivka Maximum Torque per
	Current
PI	Proporcionálně integrační regulátor
PWM	Pulzně šířková modulace
I_{sd}	Proud v ose d
I_{sq}	Proud v ose q
I_{max}	Maximální amplituda statorového proudu
U_{sd}	Napětí v ose d
U_{sq}	Napětí v ose q
L_{sd}	Indukčnost v ose d
L_{sq}	Indukčnost v ose q
L_m	Vzájemná indukčnost mezi osami [d, q]
R_s	Statorový odpor jedné fáze
ψ_{pm}	Magnetický tok permanentních magnetů
ψ_{0d}	Magnetický tok v ose d bez působení
	statorového proudu
ψ_{sd}	Magnetický statorový tok v ose d
ψ_{sq}	Magnetický statorový tok v ose q
$R_{s(comp)}$	Odpor statorového vinutí zahrnující vliv teploty
R_{sN}	Jmenovitý statorový odpor jedné fáze
ϑ_s	Teplota statorového vinutí
ϑ_e	Teplota čela motoru
m_m	Měřený moment na hřídeli soustrojí
$ heta_m$	Úhel natočení rotoru

Mechanická úhlová rychlost rotoru Elektrická úhlová rychlost rotoru

 ω_m ω_{el}

Obsah

1	Úvo	d	5
	1.1	Stavový model	5
	1.2	Diskretizace stavového modelu	6
	1.3	LQ regulátor	7
	1.4	Integrační složka	7
	1.5	Harmonická reference	8
	1.6	LQ implementace	10
	1.7	Omezení vlivu drážkování	12
2	Sim 2 1	ulace S uvažováním dopravního zpoždění PWM	19
3	Exp	erimentální měření	23
	3.1	Implementace	23
		3.1.1 Omezení propustnosti čidla momentu	23
	3.2	Měření - LQ	23
	3.3	Srovnání metod řízení	23
4	Záv	ĕr	31

1 Úvod

Tato výzkumná zpráva se zabývá řízením synchronního motoru (konkrétně IPMSM), připojeném přes LC filtr k napěťovému střídači. Testovány jsou metody založené na prediktivním řízení, pro zápis je použit stavový model.

1.1 Stavový model

Použitý typ řízení využívá stavový model IPMSM s LC filtrem [1].

$$\frac{d\boldsymbol{x}}{dt} = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{u} \tag{1}$$

Jako stavové veličiny byly zvoleny proudy vinutím stroje, napětí na kondenzátoru LC filtru a proud indukčností LC filtru. Pro zohlednění vlivu permanentních magnetů je přidána složka 1, která se v čase nemění. Vstupy stavového modelu jsou výstupní napětí měniče. Vše je přepočítáno do rotujícího dq souřadného systému, svázaného s tokem permanentních magnetů na rotoru.

$$\boldsymbol{x} = \begin{bmatrix} i_{sd}, i_{sq}, u_{sd}, u_{sq}, i_{fd}, i_{fq}, 1 \end{bmatrix}^T$$

$$\boldsymbol{u} = \begin{bmatrix} u_{inv-d}, u_{inv-q} \end{bmatrix}$$
(2)

Obr. 1.1: Popis proudů a napětí stroje s LC filtrem v dq souřadném systému

$$\boldsymbol{A} = \begin{bmatrix} -\frac{R_s}{L_{sq}} & \omega_{el} & \frac{1}{L_{sq}} & 0 & 0 & 0 & 0 \\ -\omega_{el} & -\frac{R_s}{L_{sq}} & 0 & \frac{1}{L_{sq}} & 0 & 0 & -\frac{\omega_{el}\psi_{pm}}{L_{sq}} \\ -\frac{1}{Cf} & 0 & 0 & \omega_{el} & \frac{1}{Cf} & 0 & 0 \\ 0 & -\frac{1}{Cf} & -\omega_{el} & 0 & 0 & \frac{1}{Cf} & 0 \\ 0 & 0 & -\frac{1}{Lf} & 0 & -\frac{R_f}{Lf} & \omega_{el} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
(3)
$$\boldsymbol{B} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \frac{1}{Lf} & 0 \\ 0 & 0 \end{bmatrix}$$

1.2 Diskretizace stavového modelu

Pro řízení systému v diskrétní oblasti je nutné diskretizovat i stavový model. Predikce stavových veličin pro další krok má tvar:

$$\hat{\boldsymbol{x}}(k+1) = \boldsymbol{A}_{\boldsymbol{d}}\boldsymbol{x}(k) + \boldsymbol{B}_{\boldsymbol{d}}\boldsymbol{u}(k)$$
(4)

, kde A_d a B_d jsou diskretizované matice A a B.

Přesnou diskretizaci modelu lze provést pomocí maticového exponentu (5).

$$A_{d} = e^{Adt}$$

$$B_{d} = A^{-1} \left(A_{d} - I \right) B$$
(5)

Přesná metoda má velké nároky na výpočetní výkon, není proto vhodná pro výpočty v reálném čase. Zavádí se proto aproximace pomocí Taylorova rozvoje.

Nejjednodušší variantou je diskretizace prvního řádu (Eulerova metoda) (6).

$$A_d = I + A \cdot dt$$

$$B_d = B \cdot dt$$
(6)

Se zvyšujícím se řádem roste i přesnost, např. použitím diskretizace 2. řádu (7).

$$A_{d} = I + A \cdot dt + \frac{1}{2}A^{2} \cdot dt^{2}$$

$$B_{d} = B \cdot dt + \frac{1}{2}A \cdot dt^{2}B$$
(7)

Pro testovaný stroj s LC filtrem je nutné využít minimálně dvoukrokovou diskretizaci, Eulerova metoda není dostatečně přesná. V článku [1] je využívána diskretizace 3. řádu, naše provedené simulační experimenty ukázaly minimální rozdíl oproti diskretizaci 2. řádu.

1.3 LQ regulátor

LQ regulátor má oproti Deadbeat regulátoru výhodu v delším horizontu výpočtu akčního zásahu. Celý lineární regulátor je možné předpočítat offline a implementovat jako násobení stavových veličin vypočtenými koeficienty. Pro různé otáčky je možné vygenerovat sadu LQ regulátorů a následně je interpolovat do výsledného regulátoru.

1.4 Integrační složka

Samotný LQ regulátor funguje pouze jako proporční složka PI regulátoru. Integrační složku je možné vypočítat nezávisle na LQ regulátoru a podobně jako u PI regulátoru ji sečíst s výstupem proporční složky.

$$u_{inv-d} = u_{d-LQ} + u_{d-Integ}$$

$$u_{inv-q} = u_{q-LQ} + u_{q-Integ}$$
(8)

Obr. 1.2: Celkové schéma řízení stroje

Integrační (sumační) část se vypočte na základě odchylky proudu strojem:

$$u_{d-Integ}(k) = u_{d-Integ}(k-1) + K_I(i_{sd}^* - i_{sd})$$

$$u_{q-Integ}(k) = u_{q-Integ}(k-1) + K_I(i_{sq}^* - i_{sq})$$
(9)

Nezbytné je zastavení integrace při překročení omezovače napětí (nebo antiwindup funkce).

1.5 Harmonická reference

LQ regulátor umožňuje sledovat harmonický systém daný modelem:

$$\frac{d^2x^*}{dt^2} = -\omega^2 x^*,$$

, kde ω je frekvence oscilátoru. Stavový popis má tvar:

$$\mathbf{x}^* = \begin{bmatrix} x^* \\ dx^* \end{bmatrix} : \frac{d\mathbf{x}^*}{dt} = \frac{d}{dt} \begin{bmatrix} x^* \\ dx^* \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\omega^2 & 0 \end{bmatrix} \begin{bmatrix} x^* \\ dx^* \end{bmatrix},$$

po diskretizaci při vzorkovací periodě Δt získáme diskrétní stavový model:

$$\mathbf{x}_{t+1}^* = A_x^* \mathbf{x}_t^*$$
$$A_x^* = \exp(-\begin{bmatrix} 0 & 1\\ -\omega^2 & 0 \end{bmatrix} \Delta t)$$

Původní stavový model x (4) je rozšířen:

$$\mathbf{x} = \begin{bmatrix} x \\ x^* \end{bmatrix} : \begin{bmatrix} x_{t+1} \\ x^*_{t+1} \end{bmatrix} = \begin{bmatrix} A \\ A^* \end{bmatrix} \begin{bmatrix} x_t \\ x^*_t \end{bmatrix} + \begin{bmatrix} B \\ B \end{bmatrix} u_t$$

se ztrátovou funkcí:

$$loss = (x - x^*)^2 + ru^2$$

= $([1, -1, 0]\mathbf{x})^2 + ru^2$
= $\left\| \underbrace{\begin{bmatrix} r & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \end{bmatrix}}_{G} \begin{bmatrix} u \\ \mathbf{x} \end{bmatrix} \right\|_{2}^{2}$

což odpovídá kvadratické ztrátové funkci:

$$g = \sum_{l=t}^{t+h} [u_l^T, x_l^T] G^T G[u_l^T, x_l^T],$$
(10)

Offset Pro sledování harmonického systému se stejnosměrným offsetem $x^* = o + \sin(\omega t)$ využijeme rozšířený stav $[x, x^*_{sin}, dx^*_{sin}, x^*_o]$ s $dx^*_o = 0$, což vede na:

	0	1	0
$A^* =$	$-\omega^2$	0	0
	0	0	0

а

$$G = \begin{bmatrix} r & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & -1 \end{bmatrix}.$$

Optimální LQ regulátor je vypočten numericky pomocí funkce LQdesignA.m.

[C,history]=LQdesign(M,sqQ,h,sqV0), která má vstupy:

- M struktura se stavovými maticemi systému M.A a M.B,
- G matice (nemusí být čtvercová) s popisem ztrátové funkce (10),
- h počet kroků optimalizace (predikční horizont). Pro vyšší hodnoty h se výsledný regulátor blíží regulátoru ve spojité časové oblasti.

sqV0 terminal value of the cost to go function (optional).

- Výstupem je optimální řídicí strategie
- **C** struktura s parametry C.L a C.Yu, kde C.L je matice optimálních lineárních zesílení regulátoru

$$u_t^{LQ} = -Lx_t,$$

a C.Yu je kvadratický člen minimalizace

$$(u_t - u_t^{LQ})^T Y_u^T Y_u (u_t - u_t^{LQ}).$$

Poslední člen je vyžadován pouze pokud u_t nemůže být dosaženo jako $u_t = u_t^{LQ}$, např. kvůli omezením.

1.6 LQ implementace

Dojde k rozšíření stavu o dvojici oscilátorů (jeden pro každou osu) včetně offsetů.

$$\boldsymbol{x} = \begin{bmatrix} i_{sd}, i_{sq}, u_{sd}, u_{sq}, i_{fd}, i_{fq}, 1, i^*_{sd,harm}, di^*_{sd,harm}, i^*_{sd,0}, i^*_{sq,harm}, di^*_{sq,harm}, i^*_{sq,0} \end{bmatrix}^T \quad (11)$$
$$\boldsymbol{u}_{LQ} = \begin{bmatrix} u_{d-LQ}, u_{q-LQ} \end{bmatrix}$$

	-												
	$-\frac{R_s}{L_{sd}}$	ω_{el}	$\frac{1}{L_{sd}}$	0	0	0	0	0	0	0	0	0	0
	$-\omega_{el}$	$-\frac{R_s}{L_{sq}}$	0	$\frac{1}{L_{sq}}$	0	0	$-\frac{\omega_{el}\psi_{pm}}{L_{sq}}$	0	0	0	0	0	0
	$-\frac{1}{Cf}$	0	0	ω_{el}	$\frac{1}{Cf}$	0	0	0	0	0	0	0	0
	0	$-\frac{1}{Cf}$	$-\omega_{el}$	0	0	$\frac{1}{Cf}$	0	0	0	0	0	0	0
	0	0	$-\frac{1}{Lf}$	0	$-\frac{R_f}{Lf}$	ω_{el}	0	0	0	0	0	0	0
	0	0	0	$-\frac{1}{Lf}$	$-\omega_{el}$	$-\frac{R_f}{Lf}$	0	0	0	0	0	0	0
$oldsymbol{A}=$	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	1	0	0	0	0
	0	0	0	0	0	0	0	$-\omega_{harm,d}^2$	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	1	0
	0	0	0	0	0	0	0	0	0	0	$-\omega_{harm,q}^2$	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0
	0 0												
	0 0												
	0 0												
	0 0												
	$\frac{1}{Lf}$ 0												
	$0 \frac{1}{L}$	\overline{f}											
B =	0 0												
	0 0												
	0 0												
	0 0												
	0 0												
	0 0												
	0 0												
		-										(1	2)

Ztrátová funkce g má pak tvar

11

Obr. 1.3: Moment stroje s nulovým proudem v závislosti na poloze rotoru, 100ot./min

$$g = \sum_{l=t}^{t+h} [u^T, x^T] G^T G[u^T, x^T],$$
(13)

$$g = r^2 u_{inv-d}^2 + r^2 u_{inv-q}^2 + \left(i_{sd} - i_{sd,harm}^* - i_{sd,0}^*\right)^2 + \left(i_{sq} - i_{sq,harm}^* - i_{sq,0}^*\right)^2$$
(14)

matice G pak:

1.7 Omezení vlivu drážkování

Naším cílem je omezit zvlnění momentu (cogging torque) způsobené drážkováním stroje. Při řízení na konstantní proud je skutečný proud stroje zvlněný na frekvenci $6 \cdot p_p \omega_m$

Obr. 1.4: Moment stroje s nulovým proudem v závislosti na poloze rotoru, 200ot./min

Obr. 1.5: Moment stroje s nulovým proudem v závislosti na poloze rotoru, 286ot./min (odpovídá 30 rad/s)

Obr. 1.6: Moment stroje s nulovým proudem v závislosti na čase, zobrazeny 2 mechanické otáčky v obou směrech, $\pm 100 {\rm ot.}/{\rm min}$

Obr. 1.7: Moment stroje s nulovým proudem v závislosti na čase, zobrazeny 2 mechanické otáčky v obou směrech, $\pm 200 {\rm ot.}/{\rm min}$

Obr. 1.8: Moment stroje s nulovým proudem v závislosti na čase, zobrazeny 2 mechanické otáčky v obou směrech, ± 286 ot./min (odpovídá ± 30 rad/s)

Obr. 1.9: Proud zvlněný vlivem drážkování stroje při regulaci otáček na konstantní hodnotu, 286ot./min (odpovídá 30 rad/s)

Obr. 1.10: Proud zvlněný vlivem drážkování stroje při regulaci otáček na konstantní hodnotu - zoom, 286ot./min (odpovídá 30 rad/s)

2 Simulace

Pro zobrazení průběhů simulace byl vybrán testovací průběh, který zadává požadovanou rychlost otáčení stroje (jmenovité otáčky v obou směrech) a s jinou periodou mění zátežný moment stroje z nuly na určitou hodnotu (odpovídá asi 2/3 jmenovitého momentu stroje).

2.1 S uvažováním dopravního zpoždění PWM

Během periody PWM dojde k (mírné) změně polohy souřadného systému dq. Aby výsledné proudy v systému dq odpovídaly referencím, bylo nutné pro zpětnou Parkovu transformaci přidat predikci polohy o 1/2 periody PWM.

$$\vartheta = \vartheta_{sensor} + p_p \omega_m \frac{dt}{2}$$

Oproti řízení založeném na Deadbeat MPC je vliv předpočtu polohy zanedbatelný.

Obr. 2.1: Pl regulace proudů stroje - Průběh požadovaných a skutečných proudů (nahoře), otáček a momentu stroje (dole) v souřadném systému dq s uvažováním dopravního zpoždění PWM

Obr. 2.2: MPC (GPC) - Průběh požadovaných a skutečných proudů (nahoře), otáček a momentu stroje (dole) v souřadném systému dq s uvažováním dopravního zpoždění PWM

Obr. 2.3: LQ regulátor s nulovým zadáním pro harmonické reference - Průběh požadovaných a skutečných proudů (nahoře), otáček a momentu stroje (dole) v souřadném systému dq s uvažováním dopravního zpoždění PWM

3 Experimentální měření

3.1 Implementace

Pomocí Matlabu a Symbolic toolboxu byl algoritmus řízení a diskretizace stavových matic vygenerován jako sada funkcí v jazyce C. Ověření proběhlo pomocí simulace, kdy byl kód v jazyce C vložen ve formě S-funkce. Výsledky simulace jsou srovnatelné se simulačním kódem v Matlabu/Simulinku.

3.1.1 Omezení propustnosti čidla momentu

Použité čidlo momentu Burster 8661 má napěťový výstup osazený RC filtrem (500 Ω , 1 μ F), který limituje dynamiku měřeného momentu. Z FFT analýzy signálu momentového čidla při třech různých rychlostech otáčení na Obr. 3.1 vyplývá, že propustné pásmo filtru je do frekvence 200 Hz, vyšší frekvence jsou tlumeny a zrcadlí se přes tuto frekvenci.

3.2 Měření - LQ

3.3 Srovnání metod řízení

V této části jsou porovnány metody řízení pomocí PI regulátorů, LQ regulátoru s i bez harmonické reference a MPC (Deadbeat) regulátoru. Harmonická část LQ regulátoru je velmi účinná v nízkých otáčkách, ve vyšších otáčkách její účinek klesá kvůli zvyšující se impedanci.

Obr. 3.2: Postupné zesilování harmonické složky proudu v ose q, ve skocích narůstající amplituda harmonického proudu v ose d, rychlost 30 rad/s, zátěž 0%

Obr. 3.3: Filtrovaná drážková harmonická v momentu – Postupné zesilování harmonické složky proudu v ose q, ve skocích narůstající amplituda harmonického proudu v ose d, rychlost 30 rad/s, zátěž 0%

Obr. 3.4: Postupné zesilování harmonické složky proudu v ose q, ve skocích narůstající amplituda harmonického proudu v ose d, rychlost 30 rad/s, zátěž 33%

Obr. 3.5: Filtrovaná drážková harmonická v momentu – Postupné zesilování harmonické složky proudu v ose q, ve skocích narůstající amplituda harmonického proudu v ose d, rychlost 30 rad/s, zátěž 33%

Obr. 3.6: Filtrovaná drážková harmonická v momentu - Skokové zesilování harmonické složky proudu v ose q rychlost 30 rad/s, postupné přelaďování fáze, zátěž 0%

Obr. 3.7: Rozkmit momentu a proudu v ose q při jednotlivých metodách řízení (malé otáčky, 33% zátěž)

Obr. 3.8: Rozkmit momentu a proudu v ose q při jednotlivých metodách řízení (střední otáčky, 33% zátěž)

Obr. 3.9: Rozkmit momentu a proudu v ose q při jednotlivých metodách řízení (jmenovité otáčky, 33% zátěž)

Obr. 3.10: Rozkmit momentu a proudu v ose q při jednotlivých metodách řízení (malé otáčky, 66% zátěž)

Obr. 3.11: Rozkmit momentu a proudu v ose q při jednotlivých metodách řízení (střední otáčky, 66% zátěž)

Obr. 3.12: Rozkmit momentu a proudu v ose q při jednotlivých metodách řízení (jmenovité otáčky, 66% zátěž)

4 Závěr

Výzkumná zpráva se zabývá řízením IPMSM s LC filtrem pomocí metod prediktivního řízení, konkrétně LQ regulátoru s harmonickými referencemi. Samotný LQ regulátor umožňuje efektivně řídit stroj v celém otáčkovém rozsahu. V nízkých otáčkách je možno využít jeho rozšíření o harmonickou referenci pro kompenzaci zvlnění momentu stroje. Regulátor typu MPC vede na větší zvlnění momentu a pomalejší dobu ustálení po přechodovém ději. Řízení pomocí PI regulátorů se zpětnou vazbou od proudů za LC filtrem dává srovnatelné výsledky s LQ regulátorem, ale bez možnosti kompenzovat vliv drážkování stroje.

Reference

 Cheng Xue, Dehong Zhou, and Yunwei Li. Finite-control-set model predictive control for three-level npc inverter-fed pmsm drives with lc filter. *IEEE Transactions on Industrial Electronics*, 68(12):11980–11991, 2021.

Seznam obrázků

1.1	Popis proudů a napětí stroje s LC filtrem v dq souřadném systému	6
1.2	Celkové schéma řízení stroje	8
1.3	Moment stroje s nulovým proudem v závislosti na poloze rotoru, 100 ot./min $% \mathcal{A}_{\mathrm{r}}$.	12
1.4	Moment stroje s nulovým proudem v závislosti na poloze rotoru, 200 ot./min $% \mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}($	13
1.5	Moment stroje s nulovým proudem v závislosti na poloze rotoru, 286ot./min	
	(odpovídá 30 rad/s) \ldots	13
1.6	Moment stroje s nulovým proudem v závislosti na čase, zobrazeny 2 mechanické	
	otáčky v obou směrech, ± 100 ot./min	14
1.7	Moment stroje s nulovým proudem v závislosti na čase, zobrazeny 2 mechanické	
	otáčky v obou směrech, ± 200 ot./min	15
1.8	Moment stroje s nulovým proudem v závislosti na čase, zobrazeny 2 mechanické	
	otáčky v obou směrech, ±286 ot./min (odpovídá ±30 rad/s)	16
1.9	Proud zvlněný vlivem drážkování stroje při regulaci otáček na konstantní hod-	
	notu, 286ot./min (odpovídá 30 rad/s)	17
1.10	Proud zvlněný vlivem drážkování stroje při regulaci otáček na konstantní hod-	
	notu - zoom, 286 ot./min (odpovídá 30 rad/s) $\hfill\hf$	18
2.1	Pl regulace proudů stroje - Průběh požadovaných a skutečných proudů (na-	
	hoře), otáček a momentu stroje (dole) v souřadném systému dq s uvažováním	
	dopravního zpoždění PWM	20
2.2	MPC (GPC) - Průběh požadovaných a skutečných proudů (nahoře), otáček	
	a momentu stroje (dole) v souřadném systému dq s uvažováním dopravního	
	zpoždění PWM	21
2.3	LQ regulátor s nulovým zadáním pro harmonické reference - Průběh poža-	
	dovaných a skutečných proudů (nahoře), otáček a momentu stroje (dole) v	
	souřadném systému dq s uvažováním dopravního zpoždění PWM \ldots	22
3.1	FFT signálu momentového čidla. Frekvence nad 200Hz jsou filtrem tlumeny,	
	objevuje se zrcadlení	23
3.2	Postupné zesilování harmonické složky proudu v ose q , ve skocích narůstající	
	amplituda harmonického proudu v ose d , rychlost 30 rad/s, zátěž 0%	24
3.3	Filtrovaná drážková harmonická v momentu - Postupné zesilování harmonické	
	složky proudu v ose q , ve skocích narůstající amplituda harmonického proudu	
	v ose d , rychlost 30 rad/s, zátěž 0%	25

3.4	Postupné zesilování harmonické složky proudu v ose q , ve skocích narůstající	
	amplituda harmonického proudu v ose d , rychlost 30 rad/s, zátěž 33%	26
3.5	Filtrovaná drážková harmonická v momentu - Postupné zesilování harmonické	
	složky proudu v ose q , ve skocích narůstající amplituda harmonického proudu	
	v ose d , rychlost 30 rad/s, zátěž 33%	27
3.6	Filtrovaná drážková harmonická v momentu - Skokové zesilování harmonické	
	složky proudu v ose q rychlost 30 rad/s, postupné přelaďování fáze, zátěž ${\sf 0\%}$.	28
3.7	Rozkmit momentu a proudu v ose q při jednotlivých metodách řízení (malé	
	otáčky, 33% zátěž)	29
3.8	Rozkmit momentu a proudu v ose q při jednotlivých metodách řízení (střední	
	otáčky, 33% zátěž)	29
3.9	Rozkmit momentu a proudu v ose q při jednotlivých metodách řízení (jmenovité	
	otáčky, 33% zátěž)	29
3.10	Rozkmit momentu a proudu v ose q při jednotlivých metodách řízení (malé	
	otáčky, 66% zátěž)	30
3.11	Rozkmit momentu a proudu v ose q při jednotlivých metodách řízení (střední	
	otáčky, 66% zátěž)	30
3.12	Rozkmit momentu a proudu v ose q při jednotlivých metodách řízení (jmenovité	
	otáčky, 66% zátěž)	30

Seznam tabulek

Historie revizí

Rev.	Kapitola	Popis změny	Datum	Jméno
1	Všechny	První revize zprávy	01.03.2022	Antonín Glac