

Fakulta elektrotechnická Research and Innovation Centre for Electrical Engineering

Redukce hluku PMSM s LC filtrem pomocí LQ regulátoru

Pracoviště:	RICE
Číslo dokumentu:	22190-032-2022
Typ zprávy:	Výzkumná zpráva
Řešitelé:	Ing. Antonín Glac
Hlavní řešitel:	Prof. Ing. Zdeněk Peroutka, Ph.D.
Počet stran:	29
Datum vydání:	5.11.2022
Oborové zařazení:	2.2 Electrical engineering, Electronic engineering, Information en-
	gineering - Electrical and electronic engineering

Zadavatel / zákazník:

Zpracovatel / dodavatel:

Západočeská univerzita v Plzni Research and Innovation centre for Electrical Engineering Univerzitní 8 306 14 Plzeň

Kontaktní osoba:

Ing. Antonín Glac tel. 377634108 glac@fel.zcu.cz

Tato zpráva vznikla s podporou projektu SGS-2021-021

Anotace

Tato výzkumná zpráva se zabývá popisem řízení synchronního motoru s permanentními magnety (PMSM) připojeného k měniči přes LC filtr. Hlavní funkcí řízení je redukce hluku synchronního motoru v nízkých otáčkách. Využívá kombinaci lineárně-kvadratického (LQ) regulátoru, který vypočítává požadované napětí, a PWM modulátoru pro generování spínacích pulzů měniče.

Klíčová slova

IPMSM, LQ regulátor, LC filtr, redukce hluku

Název zprávy v anglickém jazyce / Report title

Noise reduction LQ Control of PMSM with LC filter using PWM modulator

Anotace v anglickém jazyce / Abstract

This research report deals with PMSM equipped with LC filter control using Linear-Quadratic (LQ) controller. The main goal of the control is to reduce acoustic noise, especially at a low speed region of the machine. Reference output of the LQ controller is set to PWM modulator.

Klíčová slova v anglickém jazyce / Keywords

IPMSM, LQ controller, LC filter, Noise reduction

Seznam symbolů a zkratek

DSP	Digitální signálový procesor		
LQ	Lineárně kvadratický regulátor		
IM	Asynchronní motor (Induction Motor)		
IPMSM	Synchronní stroj s vnitřními perm. magnety		
МТРС	Optimální křivka Maximum Torque per		
	Current		
PI	Proporcionálně integrační regulátor		
PWM	Pulzně šířková modulace		
I_{sd}	Proud v ose d		
I_{sq}	Proud v ose q		
I_{max}	Maximální amplituda statorového proudu		
U_{sd}	Napětí v ose d		
U_{sq}	Napětí v ose q		
L_{sd}	Indukčnost v ose d		
L_{sq}	Indukčnost v ose q		
L_m	Vzájemná indukčnost mezi osami [d, q]		
R_s	Statorový odpor jedné fáze		
ψ_{pm}	Magnetický tok permanentních magnetů		
ψ_{0d}	Magnetický tok v ose d bez působení		
	statorového proudu		
ψ_{sd}	Magnetický statorový tok v ose d		
ψ_{sq}	Magnetický statorový tok v ose q		
$R_{s(comp)}$	Odpor statorového vinutí zahrnující vliv teploty		
R_{sN}	Jmenovitý statorový odpor jedné fáze		
ϑ_s	Teplota statorového vinutí		
ϑ_e	Teplota čela motoru		
m_m	Měřený moment na hřídeli soustrojí		
$ heta_m$	Úhel natočení rotoru		

Mechanická úhlová rychlost rotoru Elektrická úhlová rychlost rotoru

 ω_m ω_{el}

Obsah

1	Úvo	d	5
	1.1	Stavový model	5
	1.2	Diskretizace stavového modelu	6
	1.3	LQ regulátor	7
	1.4	Integrační složka	7
	1.5	Harmonická reference	8
	1.6	LQ implementace	10
	1.7	Měření a zpracování hluku	12
2	Ехре	erimentální měření	13
	2.1	Implementace	13
	2.2	Naměřené hodnoty	14
3	Závě	ér	25

1 Úvod

Tato výzkumná zpráva se zabývá řízením synchronního motoru (konkrétně IPMSM), připojeném přes LC filtr k napěťovému střídači. Hlavním cílem řízení je redukovat hluk stroje v oblasti nízkých otáček. Využity jsou algoritmy řízení s LQ regulátorem popsané v předchozí zprávě [1].

1.1 Stavový model

Použitý typ řízení využívá stavový model IPMSM s LC filtrem [2].

$$\frac{d\boldsymbol{x}}{dt} = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{u} \tag{1}$$

Jako stavové veličiny byly zvoleny proudy vinutím stroje, napětí na kondenzátoru LC filtru a proud indukčností LC filtru. Pro zohlednění vlivu permanentních magnetů je přidána složka 1, která se v čase nemění. Vstupy stavového modelu jsou výstupní napětí měniče. Vše je přepočítáno do rotujícího dq souřadného systému, svázaného s tokem permanentních magnetů na rotoru.

$$\boldsymbol{x} = \begin{bmatrix} i_{sd}, i_{sq}, u_{sd}, u_{sq}, i_{fd}, i_{fq}, 1 \end{bmatrix}^T$$

$$\boldsymbol{u} = \begin{bmatrix} u_{inv-d}, u_{inv-q} \end{bmatrix}$$
(2)

Obr. 1.1: Popis proudů a napětí stroje s LC filtrem v dq souřadném systému

$$\boldsymbol{A} = \begin{bmatrix} -\frac{R_s}{L_{sq}} & \omega_{el} & \frac{1}{L_{sq}} & 0 & 0 & 0 & 0 \\ -\omega_{el} & -\frac{R_s}{L_{sq}} & 0 & \frac{1}{L_{sq}} & 0 & 0 & -\frac{\omega_{el}\psi_{pm}}{L_{sq}} \\ -\frac{1}{Cf} & 0 & 0 & \omega_{el} & \frac{1}{Cf} & 0 & 0 \\ 0 & -\frac{1}{Cf} & -\omega_{el} & 0 & 0 & \frac{1}{Cf} & 0 \\ 0 & 0 & -\frac{1}{Lf} & 0 & -\frac{R_f}{Lf} & \omega_{el} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
(3)
$$\boldsymbol{B} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \frac{1}{Lf} & 0 \\ 0 & 0 \end{bmatrix}$$

1.2 Diskretizace stavového modelu

Pro řízení systému v diskrétní oblasti je nutné diskretizovat i stavový model. Predikce stavových veličin pro další krok má tvar:

$$\hat{\boldsymbol{x}}(k+1) = \boldsymbol{A}_{\boldsymbol{d}}\boldsymbol{x}(k) + \boldsymbol{B}_{\boldsymbol{d}}\boldsymbol{u}(k)$$
(4)

, kde A_d a B_d jsou diskretizované matice A a B.

Přesnou diskretizaci modelu lze provést pomocí maticového exponentu (5).

$$A_{d} = e^{Adt}$$

$$B_{d} = A^{-1} (A_{d} - I) B$$
(5)

Přesná metoda má velké nároky na výpočetní výkon, není proto vhodná pro výpočty v reálném čase. Zavádí se proto aproximace pomocí Taylorova rozvoje.

Nejjednodušší variantou je diskretizace prvního řádu (Eulerova metoda) (6).

$$A_d = I + A \cdot dt$$

$$B_d = B \cdot dt$$
(6)

Se zvyšujícím se řádem roste i přesnost, např. použitím diskretizace 2. řádu (7).

$$A_{d} = I + A \cdot dt + \frac{1}{2}A^{2} \cdot dt^{2}$$

$$B_{d} = B \cdot dt + \frac{1}{2}A \cdot dt^{2}B$$
(7)

Pro testovaný stroj s LC filtrem je nutné využít minimálně dvoukrokovou diskretizaci, Eulerova metoda není dostatečně přesná. V článku [2] je využívána diskretizace 3. řádu, naše provedené simulační experimenty ukázaly minimální rozdíl oproti diskretizaci 2. řádu.

1.3 LQ regulátor

LQ regulátor má oproti Deadbeat regulátoru výhodu v delším horizontu výpočtu akčního zásahu. Celý lineární regulátor je možné předpočítat offline a implementovat jako násobení stavových veličin vypočtenými koeficienty. Pro různé otáčky je možné vygenerovat sadu LQ regulátorů a následně je interpolovat do výsledného regulátoru.

1.4 Integrační složka

Samotný LQ regulátor funguje pouze jako proporční složka PI regulátoru. Integrační složku je možné vypočítat nezávisle na LQ regulátoru a podobně jako u PI regulátoru ji sečíst s výstupem proporční složky.

$$u_{inv-d} = u_{d-LQ} + u_{d-Integ}$$

$$u_{inv-q} = u_{q-LQ} + u_{q-Integ}$$
(8)

Obr. 1.2: Celkové schéma řízení stroje

Integrační (sumační) část se vypočte na základě odchylky proudu strojem:

$$u_{d-Integ}(k) = u_{d-Integ}(k-1) + K_I(i_{sd}^* - i_{sd})$$

$$u_{q-Integ}(k) = u_{q-Integ}(k-1) + K_I(i_{sq}^* - i_{sq})$$
(9)

Nezbytné je zastavení integrace při překročení omezovače napětí (nebo antiwindup funkce).

1.5 Harmonická reference

LQ regulátor umožňuje sledovat harmonický systém daný modelem:

$$\frac{d^2x^*}{dt^2} = -\omega^2 x^*,$$

, kde ω je frekvence oscilátoru. Stavový popis má tvar:

$$\mathbf{x}^* = \begin{bmatrix} x^* \\ dx^* \end{bmatrix} : \frac{d\mathbf{x}^*}{dt} = \frac{d}{dt} \begin{bmatrix} x^* \\ dx^* \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\omega^2 & 0 \end{bmatrix} \begin{bmatrix} x^* \\ dx^* \end{bmatrix},$$

po diskretizaci při vzorkovací periodě Δt získáme diskrétní stavový model:

$$\mathbf{x}_{t+1}^* = A_x^* \mathbf{x}_t^*$$
$$A_x^* = \exp(-\begin{bmatrix} 0 & 1\\ -\omega^2 & 0 \end{bmatrix} \Delta t)$$

Původní stavový model x (4) je rozšířen:

$$\mathbf{x} = \begin{bmatrix} x \\ x^* \end{bmatrix} : \begin{bmatrix} x_{t+1} \\ x^*_{t+1} \end{bmatrix} = \begin{bmatrix} A \\ A^* \end{bmatrix} \begin{bmatrix} x_t \\ x^*_t \end{bmatrix} + \begin{bmatrix} B \\ B \end{bmatrix} u_t$$

se ztrátovou funkcí:

$$loss = (x - x^*)^2 + ru^2$$

= $([1, -1, 0]\mathbf{x})^2 + ru^2$
= $\left\| \underbrace{\begin{bmatrix} r & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \end{bmatrix}}_{G} \begin{bmatrix} u \\ \mathbf{x} \end{bmatrix} \right\|_{2}^{2}$

což odpovídá kvadratické ztrátové funkci:

$$g = \sum_{l=t}^{t+h} [u_l^T, x_l^T] G^T G[u_l^T, x_l^T],$$
(10)

Offset Pro sledování harmonického systému se stejnosměrným offsetem $x^* = o + \sin(\omega t)$ využijeme rozšířený stav $[x, x^*_{sin}, dx^*_{sin}, x^*_o]$ s $dx^*_o = 0$, což vede na:

	0	1	0
$A^* =$	$-\omega^2$	0	0
	0	0	0

а

$$G = \begin{bmatrix} r & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & -1 \end{bmatrix}.$$

Optimální LQ regulátor je vypočten numericky pomocí funkce LQdesignA.m.

[C,history]=LQdesign(M,sqQ,h,sqV0), která má vstupy:

- M struktura se stavovými maticemi systému M.A a M.B,
- G matice (nemusí být čtvercová) s popisem ztrátové funkce (10),
- h počet kroků optimalizace (predikční horizont). Pro vyšší hodnoty h se výsledný regulátor blíží regulátoru ve spojité časové oblasti.

sqV0 terminal value of the cost to go function (optional).

- Výstupem je optimální řídicí strategie
- **C** struktura s parametry C.L a C.Yu, kde C.L je matice optimálních lineárních zesílení regulátoru

$$u_t^{LQ} = -Lx_t,$$

a C.Yu je kvadratický člen minimalizace

$$(u_t - u_t^{LQ})^T Y_u^T Y_u (u_t - u_t^{LQ}).$$

Poslední člen je vyžadován pouze pokud u_t nemůže být dosaženo jako $u_t = u_t^{LQ}$, např. kvůli omezením.

1.6 LQ implementace

Dojde k rozšíření stavu o dvojici oscilátorů (jeden pro každou osu) včetně offsetů.

$$\boldsymbol{x} = \begin{bmatrix} i_{sd}, i_{sq}, u_{sd}, u_{sq}, i_{fd}, i_{fq}, 1, i^*_{sd,harm}, di^*_{sd,harm}, i^*_{sd,0}, i^*_{sq,harm}, di^*_{sq,harm}, i^*_{sq,0} \end{bmatrix}^T \quad (11)$$
$$\boldsymbol{u}_{LQ} = \begin{bmatrix} u_{d-LQ}, u_{q-LQ} \end{bmatrix}$$

	-												
	$-\frac{R_s}{L_{sd}}$	ω_{el}	$\frac{1}{L_{sd}}$	0	0	0	0	0	0	0	0	0	0
	$-\omega_{el}$	$-\frac{R_s}{L_{sq}}$	0	$\frac{1}{L_{sq}}$	0	0	$-\frac{\omega_{el}\psi_{pm}}{L_{sq}}$	0	0	0	0	0	0
	$-\frac{1}{Cf}$	0	0	ω_{el}	$\frac{1}{Cf}$	0	0	0	0	0	0	0	0
	0	$-\frac{1}{Cf}$	$-\omega_{el}$	0	0	$\frac{1}{Cf}$	0	0	0	0	0	0	0
	0	0	$-\frac{1}{Lf}$	0	$-\frac{R_f}{Lf}$	ω_{el}	0	0	0	0	0	0	0
	0	0	0	$-\frac{1}{Lf}$	$-\omega_{el}$	$-\frac{R_f}{Lf}$	0	0	0	0	0	0	0
A =	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	1	0	0	0	0
	0	0	0	0	0	0	0	$-\omega_{harm,d}^2$	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	1	0
	0	0	0	0	0	0	0	0	0	0	$-\omega_{harm,q}^2$	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0
	0 0												
	0 0												
	0 0												
	0 0												
	$\frac{1}{Lf}$ 0												
	$0 \frac{1}{L}$	\overline{f}											
$\boldsymbol{B}=$	0 0												
	0 0												
	0 0												
	0 0												
	0 0												
	0 0												
	00												
	-	-										(1	2)

Ztrátová funkce g má pak tvar

11

$$g = \sum_{l=t}^{t+h} [u^T, x^T] G^T G[u^T, x^T],$$
(13)

$$g = r^2 u_{inv-d}^2 + r^2 u_{inv-q}^2 + \left(i_{sd} - i_{sd,h}^* - i_{sd,0}^*\right)^2 + \left(i_{sq} - i_{sq,h}^* - i_{sq,0}^*\right)^2$$
(14)

matice G pak:

1.7 Měření a zpracování hluku

Zvukový záznam byl zaznamenán pomocí mobilního telefonu (Sony Xperia 5) ve formátu .wav. Formát .wav ukládá normovanou hodnotu akustického tlaku se vzorkovací frekvencí 44100 Hz. Pro výpočet vlivu kompenzace lze užít vzorec pro hladinu akustického tlaku L_p (v dB)

$$L_p = 20\log\left(\frac{p_{RMS}}{p_0}\right) dB \tag{16}$$

, kde p_{RMS} je efektivní hodnota akustického tlaku (změřená data) a p_0 je referenční hladina akustického tlaku. Změnu hladiny akustického tlaku můžeme určit i tehdy, pokud neznáme referenční hladinu p_0

$$L_{p\Delta} = 20\log\left(\frac{p_{1RMS}}{p_0}\right) - 20\log\left(\frac{p_{2RMS}}{p_0}\right) = 20\log\left(\frac{p_{1RMS}}{p_{2RMS}}\right)dB$$

2 Experimentální měření

2.1 Implementace

Pomocí Matlabu a Symbolic toolboxu byl algoritmus řízení a diskretizace stavových matic vygenerován jako sada funkcí v jazyce C.

Pro účinné potlačení hluku je nutné správně zadat referenční hodnoty LQ regulátoru. Základní složky $i_{sd,0}^*$ a $i_{sq,0}^*$ jsou vypočteny pomocí MTPA algoritmu pro minimalizaci Jouleových ztrát. Harmonické složky $i_{sd,h}^*$ a $i_{sq,h}^*$ jsou zadávány dle předchozí offline identifikace. Okamžité hodnoty harmonických složek jsou vypočteny na základě identifikované amplitudy a fáze proudu pro takový případ, který minimalizuje zvlnění momentu.

Zadání harmonických složek je ve tvaru okamžité hodnoty a její derivace:

$$i_{sd,h}^{*} = i_{sd,h-ampl} \sin \left(6\vartheta_{el} + i_{sd,h-phase} \right)$$

$$di_{sd,h}^{*} = 6\omega_{el}i_{sd,h-ampl} \cos \left(6\vartheta_{el} + i_{sd,h-phase} \right)$$

$$i_{sq,h}^{*} = i_{sq,h-ampl} \sin \left(6\vartheta_{el} + i_{sq,h-phase} \right)$$

$$di_{sq,h}^{*} = 6\omega_{el}i_{sq,h-ampl} \cos \left(6\vartheta_{el} + i_{sq,h-phase} \right)$$
(17)

, kde ϑ_{el} je elektrická poloha rotoru a ω_{el} elektrická úhlová rychlost stroje.

2.2 Naměřené hodnoty

Obr. 2.1: Normovaná hodnota akustického tlaku před a po injektáži harmonického kompenzačního signálu, rychlost 100 ot./min, zátěž 0%

Obr. 2.2: Normovaná hodnota akustického tlaku před a po injektáži harmonického kompenzačního signálu, rychlost 200 ot./min, zátěž 0%

Obr. 2.3: Normovaná hodnota akustického tlaku před a po injektáži harmonického kompenzačního signálu, rychlost 300 ot./min, zátěž 0%

Obr. 2.4: Frekvenční spektrum normované hodnoty akustického tlaku před (modrá) a po (červená) injektáži harmonického kompenzačního signálu, rychlost 100 ot./min, zátěž 0%

Obr. 2.5: Frekvenční spektrum normované hodnoty akustického tlaku před (modrá) a po (červená) injektáži harmonického kompenzačního signálu, rychlost 200 ot./min, zátěž 0%

Obr. 2.6: Frekvenční spektrum normované hodnoty akustického tlaku před (modrá) a po (červená) injektáži harmonického kompenzačního signálu, rychlost 300 ot./min, zátěž 0%

Obr. 2.7: Normovaná hodnota akustického tlaku před a po injektáži harmonického kompenzačního signálu, rychlost -100 ot./min, zátěž 0%

Obr. 2.8: Normovaná hodnota akustického tlaku před a po injektáži harmonického kompenzačního signálu, rychlost -200 ot./min, zátěž 0%

Obr. 2.9: Normovaná hodnota akustického tlaku před a po injektáži harmonického kompenzačního signálu, rychlost -300 ot./min, zátěž 0%

Obr. 2.10: Frekvenční spektrum normované hodnoty akustického tlaku před (modrá) a po (červená) injektáži harmonického kompenzačního signálu, rychlost -100 ot./min, zátěž 0%

Obr. 2.11: Frekvenční spektrum normované hodnoty akustického tlaku před (modrá) a po (červená) injektáži harmonického kompenzačního signálu, rychlost -200 ot./min, zátěž 0%

Obr. 2.12: Frekvenční spektrum normované hodnoty akustického tlaku před (modrá) a po (červená) injektáži harmonického kompenzačního signálu, rychlost -300 ot./min, zátěž 0%

3 Závěr

Výzkumná zpráva se zabývá řízením s IPMSM s LC filtrem s ohledem na redukci hluku. Z naměřených výsledků je patrné, že hodnoty hladiny akustického tlaku jsou přibližně stejné pro oba směry otáčení stroje. Pro otáčky ± 100 ot./min je hladina akustického tlaku nízká, injektáží dojde k mírnému zlepšení. Na otáčkách ± 200 a ± 300 ot./min je výchozí nekompenzovaná hladina akustického tlaku vysoká a díky kompenzaci dojde k výraznému snížení hluku. Ve spektrech je také patrná hodnota spínací frekvence 10kHz.

Reference

- A. Glac. Řízení PMSM s LC filtrem pomocí LQ regulátoru. In Západočeská univerzita v Plzni, Plzeň, 2022. Výzkumná zpráva.
- [2] Cheng Xue, Dehong Zhou, and Yunwei Li. Finite-control-set model predictive control for three-level npc inverter-fed pmsm drives with lc filter. *IEEE Transactions on Industrial Electronics*, 68(12):11980–11991, 2021.

Seznam obrázků

1.1	Popis proudů a napětí stroje s LC filtrem v dq souřadném systému	6
1.2	Celkové schéma řízení stroje	8
2.1	Normovaná hodnota akustického tlaku před a po injektáži harmonického kom-	
	penzačního signálu, rychlost 100 ot./min, zátěž 0%	14
2.2	Normovaná hodnota akustického tlaku před a po injektáži harmonického kom-	
	penzačního signálu, rychlost 200 ot./min, zátěž 0%	15
2.3	Normovaná hodnota akustického tlaku před a po injektáži harmonického kom-	
	penzačního signálu, rychlost 300 ot./min, zátěž 0%	16
2.4	Frekvenční spektrum normované hodnoty akustického tlaku před (modrá) a po	
	(červená) injektáži harmonického kompenzačního signálu, rychlost 100 ot./min,	
	zátěž 0%	17
2.5	Frekvenční spektrum normované hodnoty akustického tlaku před (modrá) a po	
	(červená) injektáži harmonického kompenzačního signálu, rychlost 200 ot./min,	
	zátěž 0%	18
2.6	Frekvenční spektrum normované hodnoty akustického tlaku před (modrá) a po	
	(červená) injektáži harmonického kompenzačního signálu, rychlost 300 ot./min,	
	zátěž 0%	19
2.7	Normovaná hodnota akustického tlaku před a po injektáži harmonického kom-	
	penzačního signálu, rychlost -100 ot./min, zátěž 0%	20
2.8	Normovaná hodnota akustického tlaku před a po injektáži harmonického kom-	
	penzačního signálu, rychlost -200 ot./min, zátěž 0%	21
2.9	Normovaná hodnota akustického tlaku před a po injektáži harmonického kom-	
	penzačního signálu, rychlost -300 ot./min, zátěž 0%	22
2.10	Frekvenční spektrum normované hodnoty akustického tlaku před (modrá) a	
	po (červená) injektáži harmonického kompenzačního signálu, rychlost -100	
	ot./min, zátěž 0%	23
2.11	Frekvenční spektrum normované hodnoty akustického tlaku před (modrá) a	
	po (červená) injektáži harmonického kompenzačního signálu, rychlost -200	
	ot./min, zátěž 0%	24
2.12	Frekvenční spektrum normované hodnoty akustického tlaku před (modrá) a	
	po (červená) injektáži harmonického kompenzačního signálu, rychlost -300	
	ot./min, zátěž 0%	25

Seznam tabulek

Historie revizí

Rev.	Kapitola	Popis změny	Datum	Jméno
1	Všechny	První revize zprávy	01.03.2022	Antonín Glac